Environmental and health risk assessment of cadmium, zinc,iron, copper in crops and soil at Enugu State dumpsite

Authors

  • Emmanuel Agboeze
    Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu State, Nigeria
  • Henry Okechukwu Agboeze
    Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu State, Nigeria
  • Theresa Orieji Uchechukwu
    Department of Pure and Industrial Chemistry, Federal University Ndufe Alike Ikwo, Enonyi State Nigeria
  • Anayo Vitus Ofordile
    Federal Ministry of Innovation, Science and Technology, Abuja, Nigeria
  • Chukwuebuka Gabriel Eze
    Department of Science Laboratory Technology (Biochemistry Option), Faculty of Physical Science, University of Nigeria, Nsukka, Enugu State, Nigeria

Keywords:

Heavy metals, Risk assessment, Telfairia occidentalis, food safety

Abstract

Contamination of soils and food crops around the Ugwuaji dumpsite in Enugu State, Nigeria was evaluated. Zinc (Zn), copper (Cu), iron (Fe), and cadmium (Cd) were determined in seventy-three (73) samples, which included pre-planting and post-harvest soils, control soils, ash from the New Artisan abattoir, and edible parts of Dioscorea bulbifera, Zea mays, and Telfairia occidentalis. Samples were digested with aqua regia and analyzed using atomic absorption spectrophotometry (AAS). The analytical recovery was 96% with a relative standard deviation (RSD) of 5.7%. Soil properties showed pH values between 5.2-6.7 (slightly acidic), cation exchange capacity (CEC) of 8.7-14.5 cmol/kg, and organic matter contents of 1.84-3.92%. Post-harvest soils recorded 11.33 ± 2.51 mg/kg higher concentrations of Zn and 4.64 ± 0.69 mg/kg of Cu compared to control soils, while Fe decreased to 735.47 ± 73.20 mg/kg. Cadmium was detected in one soil sample (1.14 mg/kg) and in T. occidentalis (0.02-2.03 mg/kg), but was not detected in D. bulbifera and Z. mays. Pollution indices revealed high Cd contamination with enrichment factor (EF > 10), geoaccumulation index (Igeo > 2), contamination factor (CF > 6), and a pollution load index (PLI) of 1.65. The bioconcentration factor (BCF) of Zn in T. occidentalis was 3.98 with a translocation factor (TF) of 1.87, showing strong accumulation. Estimated daily intake (EDI) and total hazard index (THI) for adults were low (0.00042-0.00057), while children showed high THI values of 4.28 for Z. mays and 4.54 for D. bulbifera. Structural equation modeling indicated that soil pH (? = -0.62) influenced Cd mobility and its accumulation in T. occidentalis (? = 0.58), contributing to child-specific health risk (? = 0.79). These results highlight the need for risk control measures, including regulated ash application and crop-specific monitoring in waste-affected farmlands.

Dimensions

[1] D. A. Ayejoto & J. C. Egbueri, “Human health risk assessment of nitrate and heavy metals in urban ground-water in southeast Nigeria”, Ecological Frontiers 44 (2024) 60. https://doi.org/10.1016/j.chnaes.2023.06.008.

[2] E. Agboeze, T. O. Uchechukwu & O. Ogbobe, “Novel strong and weak kola nut (Cola-Sterculiaceae) testa cation exchangers for the remediation of polluted water”, Am. J. Innov. Res. Appl. Sci. 11 (2020) 13. https://doi.org/10.59110/jeicc.v2i1.99.

[3] D. Karunanidhi, M. R. H. Raj, V. N. Prapanchan & T. Subramani, “Predicting groundwater fluoride levels for drinking suitability using machine learning approaches with traditional and fuzzy logic model-based health risk assessment”, Geosci. Front. 25 (2025) 102087. https://doi.org/10.1016/j.gsf.2025.102087.

[4] G. P. Gakis, I. G. Aviziotis & C. A. Charitidis, “Assessing the ecotoxicity of multicomponent nanomaterials using a classification SAR approach”, Environ. Sci. Nano 12 (2025) 2828. https://doi.org/10.1039/D4EN01183J.

[5] O. Oyewumi, A. Vázquez-Ortega, J. P. Sequeira & G. Signorini, “Health risk assessment of potential heavy metals bioaccumulation in specialty crops grown in farm soils amended with dredged material”, J. Environ.Manage. 375 (2025) 124332. https://doi.org/10.1016/j.jenvman.2025.124332.

[6] D. N. Ajah, E. Agboeze, J. N. Ihedioha, E. Chukwudi-Madu & C. C. Chime, “Levels of zinc (Zn), copper (Cu), iron (Fe), and cadmium (Cd) in soil, rice stalk, and Oryza sativa grain in Ishiagu rice field, Ebonyi State, Nigeria; Human health risk”, J. Niger. Soc. Phys. Sci. 4 (2022) 891. https://doi.org/10.46481/jnsps.2022.891.

[7] J. T. Adu & F. I. Aneke, “Evaluation of heavy metal contamination in landfills from e-waste disposal and its potential as a pollution source for surface water bodies”, Results Eng. 25 (2025) 104431. https://doi.org/10.1016/j.rineng.2025.104431.

[8] A. Edet, A. Ukpong, A. Ekwere, O. Wiche, T. Nganje, C. Adamu & E. Kudamnya, “Assessment of surface water and groundwater quality and their associated human health risks around dumpsites, Cross River State, Southern Nigeria”, Environ. Earth Sci. 84 (2025) 234. https://doi.org/10.1007/S41208-022-00474-W.

[9] P. Adewale, S. C. O. Makinde & V. O. Kusemiju, “Assessment of heavy metal residues in soil and vegetables along urban–peri-urban gradient of Lagos State Nigeria”, J. Environ. Issues Clim. Change 2 (2023) 70. https://doi.org/10.22270/ujpr.v7i4.816.

[10] N. K. Olasunkanmi, D. T. Ogundele, V. T. Olayemi, W. A. Yahya, A. R. Olasunkanmi, Z. O. Yusuf & S. A. Aderoju, “Assessing leachate contamination and groundwater vulnerability in urban dumpsites: a case study of the Ipata Area, Ilorin, Nigeria”, J. Niger. Soc. Phys. Sci. 6 (2024) 1889. https://doi.org/10.46481/jnsps.2024.1889.

[11] C. Gopi, A. Charles, C. Manivannan, S. P. Lakshmi, A. Jose & M. Muthiyan, “Physico-chemical and trace metal analysis in groundwater of Nagapattinam Region in Nagapattinam District of Tamilnadu State”, J. Niger. Soc. Phys. Sci. 5 (2023) 1160. https://doi.org/10.46481/jnsps.2023.1160.

[12] M. A. Lala, S. Kawu, O. A. Adesina & J. A. Sonibare, “Assessment of heavy metal pollution status in surface soil of a Nigerian university”, J. Niger. Soc. Phys. Sci. 4 (2022) 887. https://doi.org/10.46481/jnsps.2022.887.

[13] J. N. Ihedioha, P. O. Ukoha & N. R. Ekere, “Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria”, Environ. Geochem. Health 39 (2017) 497. https://doi.org/10.1007/s10653-016-9830-4.

[14] F. Sun, Y. Tao, H. Liao, F. Wu, J. P. Giesy & J. Yang, “Pollution levels and risk assessment of thallium in Chinese surface water and sediments”, Sci. Total Environ. 851 (2022) 158363. https://doi.org/10.1016/j.scitotenv.2022.158363.

[15] N. Chinye-Ikejiunor, G. O. Iloegbunam, A. Chukwuka & O. Ogbeide, “Groundwater contamination and health risk assessment across an urban gradient: Case study of Onitcha metropolis, south-eastern Nigeria”, Groundw. Sustain. Dev. 14 (2021) 100642. https://doi.org/10.1016/j.gsd.2021.100642.

[16] E. Agboeze, O. Theresa & O. Ogbobe, “Extraction and characterization of pharmaceutical grade microcrystalline cellulose from Raphia farinifera inflorescence”, Univ. J. Pharm. Res. 7 (2022) 59. https://doi.org/10.22270/ujpr.v7i4.816.

[17] N. Bhambore & M. S. Kumar, “Assessing seasonal fluctuations in leachate chemical properties and leachate pollution index as contamination indicators”, Environ. Monit. Assess. 195 (2023) 1432. https://doi.org/10.1007/s10661-023-11800-2.

[18] T. T. Dadebo & G. T. Gelaw, “Determination of metals in water samples within the irrigation area in Telo District, Kaffa Zone, South Western Ethiopia”, Heliyon 10 (2024) e16005. https://doi.org/10.1016/j.heliyon.2023.e16005.

[19] UNEP, WHO, WOAH, One health joint plan of action (2022–2026): working together for the health of humans, animals, plants and the environment, World Health Organization, 2022.

[20] FEPA, Guidelines and standards for environmental pollution control in Nigeria. National Environmental Standards – Parts 2 and 3, Government Press, Lagos, 2001, p. 238.

[21] W. de Vries, J. E. Groenenberg, S. T. E. Lofts & M. Posch, “Critical loads of heavy metals for soils”, in Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, B. J. Alloway, Ed., Dordrecht: Springer, 2013, pp. 211–237. https://doi.org/10.1007/978-94-007-4470-7_8.

[22] A. O. Oyebamiji, O. A. Olaolorun, O. J. Popoola & T. Zafar, “Assessment of heavy metal pollution in soils of Jebba Area, Nigeria: Concentrations, source analysis and implications for ecological and human health risks”, Science of the Total Environment 945 (2024) 173860. https://doi.org/10.1016/j.scitotenv.2024.173860.

[23] Z. Li & Y. Li, “Environmental regulation and employment: Evidence from China’s new Environmental Protection Law”, Economic Analysis and Policy 82 (2024) 400. https://doi.org/10.1016/j.eap.2024.02.014.

[24] U. S. Environmental Protection Agency, “Risk assessment guidance for Superfund Volume I: Human health evaluation manual”, 2022. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e.

[25] N. Chinye-Ikejiunor, G. O. Iloegbunam, A. Chukwuka & O. Ogbeide, “Groundwater contamination and health risk assessment across an urban gradient: Case study of Onitsha metropolis, south-eastern Nigeria”, Groundwater for Sustainable Development 14 (2021) 100642. https://doi.org/10.1016/j.gsd.2021.100642.

[26] R. Osae, D. Nukpezah, D. A. Darko, S. S. Koranteng & A. Mensah, “Accumulation of heavy metals and human health risk assessment of vegetable consumption from a farm within the Korle lagoon catchment”, Heliyon 9 (2023) e16005. https://doi.org/10.1016/j.heliyon.2023.e15663.

[27] T. Ahmad, S. Gul, M. A. Khan, X. Diao, A. Ahmad & S. Ahmad, “Bioaccumulation and health risk assessment of heavy metal (loid)s in different fish species of Hainan island, China”, Thalassas: An International Journal of Marine Sciences 38 (2022) 1395. https://doi.org/10.1007/s41208-022-00469-8.

[28] S. Odewumi, “Mineralization, geochemical signatures, and provenance of stream sediments on the Jos Plateau, Northcentral Nigeria”, Journal of the Nigerian Society of Physical Sciences 6 (2024) 2181. https://doi.org/10.46481/jnsps.2024.2181.

[29] Codex Alimentarius Commission, Codex Alimentarius Commission: Procedural Manual, Food & Agriculture Organization, 2007. https://www.fao.org/3/y1579e/y1579e00.htm.

[30] H. H. Ku, S. C. Yang, H. A. Hsiao, J. S. Chen & M. P. Ling, “Assessing dietary exposure risk to food preservatives among the eating-out population in Taiwan using the Total Diet Study method”, Foods 14 (2025) 365. https://doi.org/10.3390/foods1413365.

[31] V. F. Sanga & C. F. Pius, “Heavy metal contamination in soil and food crops and associated human health risks in the vicinity of Iringa Municipal dumpsite, Tanzania”, Discover Environment 2 (2024) 104. https://doi.org/10.1007/s44271-024-00104-x.

[32] F. Jiang, L. Wang, Z. Tang, S. Yang, M. Wang, X. Feng, C. He, Q. Han, F. Guo & B. Yang, “Distribution, assessment, and causality analysis of soil heavy metals pollution in complex contaminated sites: A case study of a chemical plant”, Environmental Geochemistry and Health 46 (2024) 1. https://doi.org/10.1007/s10653-023-01878-5.

[33] R. Osae, D. Nukpezah, D. A. Darko, S. S. Koranteng & A. Mensah, “Accumulation of heavy metals and human health risk assessment of vegetable consumption from a farm within the Korle lagoon catchment”, Heliyon 9 (2023) e16005. https://doi.org/10.1016/j.heliyon.2023.e15663.

[34] A. Neeraj, R. Y. Hiranmai & K. Iqbal, “Comprehensive assessment of pollution indices, sources apportionment and ecological risk mapping of heavy metals in agricultural soils of Raebareli District, Uttar Pradesh, India, employing a GIS approach”, Land Degradation & Development 34 (2023) 173. https://doi.org/10.1002/ldr.4462.

[35] Y. Li, Q. Zhang, L. Zhu, J. Yang, J. Wei, Y. Li & X. Chen, “Effect of applying oyster shell powder on soil properties and microbial diversity in the acidified soils of pomelo garden”, Environmental Microbiome 20 (2025) 1. https://doi.org/10.1186/s40793-025-00588-4.

[36] M. Shahzad, A. Bibi, A. Khan, A. Shahzad, Z. Xu, T. M. Maruza & G. Zhang, “Utilization of antagonistic interactions between micronutrients and cadmium (Cd) to alleviate Cd toxicity and accumulation in crops”, Plants 14 (2025) 707. https://doi.org/10.3390/plants14050707.

[37] U. Zulfiqar, F. U. Haider, M. F. Maqsood, W. Mohy-Ud-Din, M. Shabaan, M. Ahmad & B. Shahzad, “Recent advances in microbial-assisted remediation of cadmium-contaminated soil”, Plants 12 (2023) 3147. https://doi.org/10.3390/plants12173147.

[38] G. Ding, Y. Gao, H. Kan, Q. Zeng, C. Yan, F. Li & J. Zhang, “Environmental exposure and child health in China”, Environment International (2024) 108722. https://doi.org/10.1016/j.envint.2024.108722.

[39] M. Zou, S. Zhou, Y. Zhou, Z. Jia, T. Guo & J. Wang, “Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review”, Environmental Pollution 280 (2021) 116965. https://doi.org/10.1016/j.envpol.2021.116965.

[40] E. O. Echeweozo, C. I. Nworie, A. O. Ojobeagu, P. B. Otah & I. J. Okoro, “Health risk assessment due to environmental radioactivity and heavy metal contamination at the central solid waste dumpsite in Ebonyi State, Nigeria”, Journal of the Nigerian Society of Physical Sciences 7 (2025) 2160. https://doi.org/10.46481/jnsps.2025.2160.

[41] E. Agboeze, C. Chime, P. I. Udeozo, V. A. Ofordile, P. O. Nsude, C. G. Eze, L. C. Okwesili, H. O. Agboeze & E. C. Ezike, “Heavy metal contamination and health risks from dumpsite effluents in Enugu State Southeastern Nigeria”, Environmental Analysis Health and Toxicology 40 (2025) e2025023-0. https://doi.org/10.5620/eaht.20250069.

Published

2026-02-01

How to Cite

Environmental and health risk assessment of cadmium, zinc,iron, copper in crops and soil at Enugu State dumpsite. (2026). Journal of the Nigerian Society of Physical Sciences, 8(1), 3033. https://doi.org/10.46481/jnsps.2026.3033

Issue

Section

Chemistry

How to Cite

Environmental and health risk assessment of cadmium, zinc,iron, copper in crops and soil at Enugu State dumpsite. (2026). Journal of the Nigerian Society of Physical Sciences, 8(1), 3033. https://doi.org/10.46481/jnsps.2026.3033