Effect of Time on the Syntheses of Carbon Nanotubes via Domestic Oven

https://doi.org/10.46481/jnsps.2022.355

Authors

  • N. Kure Department of Physics, Faculty of Science, Kaduna State University, Kaduna, Nigeria
  • I. H Daniel Department of Physics, Faculty of Science, Kaduna State University, Kaduna, Nigeria
  • N. M Hamidon Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Selangor, Malaysia
  • I. I Lakin Department of Physics, Faculty of Science, Kaduna State University, Kaduna, Nigeria
  • B. U Machu Department of Physics, Faculty of Science, Kaduna State University, Kaduna, Nigeria
  • E. J Adoyi Department of Physics, Faculty of Science, Kaduna State University, Kaduna, Nigeria

Keywords:

Plasma, Raman, Coated silicon, Polyethylene and Quartz

Abstract

In this study, carbon nanotubes (CNTs) were synthesized directly on coated silicon substrate via commercial microwave oven at 2.45 GHzf for3 minutes (Sample A) and 4 minutes (Sample B). The plasma provides the required temperature for catalytic decomposition of carbon source (polyethylene) at 750 ?C under atmospheric pressure. Raman spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscope (HRTEM), X-ray diffractometer (XRD) techniques are used to characterize the as-synthesized. Results indicate that, the calculated carbon quality was found to be 1.01 and 1.02 for sample A and sample B respectively with average diameter range of (6.0 to 10.0) ± 0.5 nm. The high intensity ratio is attributed to the defect mode in the CNTs. Also, the analysis from FESEM shows twisted and randomly oriented structures with an interlayer spacing of about 0.35 nm in the internal structure of most CNTs. HRTEM further confirmed the interlayer spacing of about 0.35 nm corresponding to FESEM result. The crystallinity of the CNTs was obtained via X-ray diffraction techniques. Lastly, the results indicate sample A and B produces CNTs, with sample B having more graphitic structure than sample A due to duration of synthesis process.

Dimensions

H. W. Kroto, S. P. Balm & A. W. Allaf, “Buckminsterfullerene”, Nature 318 (1985) 161. DOI: https://doi.org/10.1038/318162a0

M. J. O’Connell, Carbon Nanotubes Properties and Applications. Taylor & Francis Group; Flourida, 2006

N. Kure, N. M. Hamidon, S. Azhari, I. K. Usman, I. H. Hasan & L. Ismail, Synthesis of Carbon Nanotubes Using Microwave Oven. IEEE Explore, 2015. DOI: https://doi.org/10.1109/RSM.2015.7355039

N. Kure, N. M. Hamidon, I. M. Maryam, H. M. Yusoff, N. M. Shuhazlly, S. Azhari & Z. Yunusa, “Simple Microwave-Assisted Synthesis of Carbon Nanotubes Using Polyethylene as Carbon Precursor”, Journal of Nanomaterials 2017 (2017) 1. DOI: https://doi.org/10.1155/2017/2474267

A. B. Suriani, A. R. Dalila, A. Mohamed, M. H. Mamat, M. Salina, M. S. Rosmi, J. Rosly, R. Md Nor & M. Rusop, “Vertically aligned Carbon Nanotubes Synthesized from wastes Chicken Fat”, Materials Letters 101 (2013) 61. DOI: https://doi.org/10.1016/j.matlet.2013.03.075

S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354 (1991) 56. DOI: https://doi.org/10.1038/354056a0

S. G. Wang, Q. Zhang, D. J. Yang, P. J. Sellin & G. F. Zhong, “Multiwalled carbon nanotube-based gas sensors for NH3 detection”, Diamond and Related Materials 13 (2004) 1327. DOI: https://doi.org/10.1016/j.diamond.2003.11.070

S. J. Kyung, Y. H. Lee, C. Kim, J. H. Lee & G. Y. Yeom, “Field Emission Properties of Carbon Nanotubes Synthesized by Capillary Type Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition at Low Temperature”, Carbon 44 (2006) 1530. DOI: https://doi.org/10.1016/j.carbon.2005.12.020

L. Yang, Z. Shi & W. Yang “Polypyrrole Directly Bonded to Air-Plasma Activated Carbon Nanotube as Electrode Materials for High-Performance Supercapacitor”, Electrochimica Actamica Acta 153 (2015) 76. DOI: https://doi.org/10.1016/j.electacta.2014.11.146

T. Guo, P. Nikolaev, A. G. Rinzler, D. Tombnek, D. T. Colbert & R. E. J. Smalley, “Self- Assembly of Tubular Fullerene”, Journal of Physical Chemistry 99 (1995) 10694. DOI: https://doi.org/10.1021/j100027a002

A. B. Suriani, A. A. Azira, S. F. Nik, R. Md Nor & M. Rusop, “Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor”, Materials Letters 63 (2009) 2704. DOI: https://doi.org/10.1016/j.matlet.2009.09.048

N. Kure, N. M. Hamidon, I. H. Daniel, A. A. Kassimu & S. H. Sarki, “Construction of Plasma Enhanced Chemical Vapor Deposition Technique via Commercial Microwave Oven”, American Association for Science and Technology 5 (2018) 46.

B. Reeti & D. W. Hanoch, “Fast Growth of Carbon Nanotubes Using a Microwave Oven”, Carbon 82 (2014) 327. DOI: https://doi.org/10.1016/j.carbon.2014.10.077

M. Hotta, M. Hayashi, M. T. Lanagan,D. K. Agrawal & K. Nagata, “Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4 GHz) and between 1 to 10 GHz”, ISIJ International 51 (2011) 1766. DOI: https://doi.org/10.2355/isijinternational.51.1766

S. Rahmanian, A. R. Suraya & R. Zahari, “Synthesis of Vertically Aligned Carbon Nanotubes on Carbon Fiber”, Applied Surface Science 271 (2013) 424. DOI: https://doi.org/10.1016/j.apsusc.2013.01.207

T. Belin & F. Epron, “Characterization methods of carbon nanotubes: a review,” Materials Science and Engineering: B, 119 (2005) 105. DOI: https://doi.org/10.1016/j.mseb.2005.02.046

A. Gohier, C. P. Ewels, T. M. Minea & M. A. Djouadi, “Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size”, Carbon 46 (2009) 1331. DOI: https://doi.org/10.1016/j.carbon.2008.05.016

G. Tong, F. Liu, W. Wu, F. Du & J. Guan, “Rambutan-like Ni/MWCNT Heterostructures: Easy Synthesis, Formation Mechanism, and Controlled Static Magnetic and Microwave Electromagnetic Characteristics”, Journal of Materials Chemistry A 2 (2014) 7373. DOI: https://doi.org/10.1039/c4ta00117f

W. X. Chen, J. P. Tu, H. Y. Gan, Z. D. Xu, Q. G. Wang, J. Y. Lee & X. B. Zhang, “Electroless Preparation and Tribological Properties of NiP-Carbon Nanotube Composite Coatings Under Lubricated Condition”, Surface and Coatings Technology 160 (2002) 68. DOI: https://doi.org/10.1016/S0257-8972(02)00408-5

S. Shang, L. Gan & M. C. W. Yuen, “Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber”, Composites Science and Technology 86 (2013) 129. DOI: https://doi.org/10.1016/j.compscitech.2013.07.010

W. W. Liu, S. P. Chai, A. R. Mohamed & U. Hashim, “Synthesis and Characterization of Graphene and Carbon Nanotubes: A Review on The Past and Recent Developments”, Journal of Industrial and Engineering Chemistry 20 (2014) 1171. DOI: https://doi.org/10.1016/j.jiec.2013.08.028

N. Kure, I. H. Daniel, B. U. Machu, I. A. Bello & M. Asnawi, “Comparative Study on the Syntheses of Carbon Nanomaterials Using Polyethylene and Risk Husk as Carbon Precursor”, FUDMA Journal of Sciences 4 (2020) 731. DOI: https://doi.org/10.33003/fjs-2020-0403-315

N. Kure, Z. Yunusa, M. N. Hamidon, I. H. Daniel & I. I. Lakin, “Synthesis of Carbon Nanostructures Using Microwave Enhanced Chemical Vapor Deposition and Its Potential Application to Ammonia Sensing”, Physicsaccess 1 (2021) 44. DOI: https://doi.org/10.47514/phyaccess.2021.1.1.0007

Published

2022-02-27

How to Cite

Kure, N., Daniel, I. H., Hamidon, N. M., Lakin, I. I., Machu, B. U., & Adoyi, E. J. (2022). Effect of Time on the Syntheses of Carbon Nanotubes via Domestic Oven. Journal of the Nigerian Society of Physical Sciences, 4(1), 59–63. https://doi.org/10.46481/jnsps.2022.355

Issue

Section

Original Research