Optimization by Box Behnken Design for Eosin Yellow Dye Removal from Aqueous Medium using Date Palm Seeds-Porous Carbon@TiO2 Blend

Authors

  • Samsudeen Olanrewaju Azeez Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Nigeria
  • Akeem Adebayo Jimoh Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Nigeria
  • Ismaila Olalekan Saheed Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Nigeria
  • Kabir Opeyemi Otun Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Nigeria
  • Aliru Olajide Mustapha Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, 241103, Malete, Nigeria
  • Folahan Amoo Adekola Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, 240003, Ilorin, Nigeria

Keywords:

Porous carbon, TiO2, Adsorption, Eosin yellow dye, Box Behnken design

Abstract

Biological stains are potentially harmful compounds present in the environment, in which Eosin yellow dye (EYD) is one of the most commonly applied stains. In this research, date palm seeds-porous carbon (DPSC) and its TiO2 blend (TiO2-DPSC) were prepared and their efficiency on the removal of EYD from an aqueous medium was investigated. Characterization by SEM, EDX, FTIR and BET surface area was performed on the materials. The BET surface area (542.63 m2/g) and pore diameter (2.02 nm) of TiO2-DPSC were found to be higher than that of DPSC (332.74 m2/g and 1.85 nm) indicating that TiO2-DPSC is mesoporous while DPSC is microporous. The major and interactive impacts of the adsorption parameters: initial EYD concentration, pH, adsorbent dose, and time of contact were examined by Box Behnken design in response surface methodology. The high R2 values 0.9658 and 0.9597 for DPSC and TiO2-DPSC agreed with the adjusted R2 values suggesting the quadratic model sufficiently interprets the adsorption data. The optimum removal efficiency of EYD onto DPSC and TiO2-DPSC was 34.63 mg/g and 55.34 mg/g which are in agreement with the predicted removal of 34.75 mg/g and 50.11 mg/g respectively at the center point values of Co=300 mg/L, pH 2, 362.5 min and 0.1 g adsorbent dose. The results also showed the acceptability of the Box Behnken design in response surface methodology for the optimization of EYD removal from aqueous media using DPSC and TiO2-DPSC blends. Hence, better EYD removal reported in TiO2-DPSC compared to DPSC was due to its improved adsorptive features.

Dimensions

L. Brahmi, F. Kaouah, S. Boumaza & M. Trari, “Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones”, Appl. Water Sci. 9 (2019) 1, https://doi.org/10.1007/s13201-019-1053-2.

M. S. M. Amran, D. M. Khalid, W. A. K. W. Azlina & A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes : A comprehensive review”, Desalination 280 (2011) 1, https://doi.org/10.1016/j.desal.2011.07.019.

I. D. Dallabona, L. Mathias, R. Maria & M. Jorge, “A new green floating photocatalyst with Brazilian bentonite into TiO 2 / alginate beads for dye removal”, Colloids Surfaces A Physicochem. Eng. Asp. 627 (2021) 127159, https://doi.org/10.1016/j.colsurfa.2021.127159.

N. Abdus-salam, A. V Ikudayisi-ugbe & F. A. Ugbe, ”Adsorption studies of acid dye –Eosin yellow on date palm seeds , goethite and their composite”, Chem. Data Collect. 31 (2021) 1, https://doi.org/10.1016/j.cdc.2020.100626.

J. P. Lima, G. Alvarenga, A. C. F. Goszczynski, G. R. Rosa & T. J. Lopes, “Batch adsorption of methylene blue dye using Enterolobium contortisiliquum as bioadsorbent: experimental, mathematical modeling and simulation”, J. Ind. Eng. Chem. 91 (2020) 362, https://doi.org/10.1016/j.jiec.2020.08.029.

A. Mittal, D. Jhare & J. Mittal, “Adsorption of hazardous dye Eosin yellow from aqueous solution onto waste material de –Oiled S=soya: isotherm, kinetics and bulk removal”, J. Mol. Liq. 179179 (2013) 133, https://doi.org/10.1016/j.molliq.2012.11.032.

F. A. Ugbe, P. O. Anebi & V. A. Ikudayisi, ”Biosorption of an anionic dye ,Eosin yellow onto pineapple peels : Isotherm and Thermodynamic Study”, Int. Ann. Sci. 4 (2018) 14, https://doi.org/https://doi.org/10.21467/ias.4.1.14-19 RESEARCH.

M. Hasanzadeh, A. Simchi & H. Shahriyari, ”Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption : Synthesis, adsorption mechanism and kinetics studies”, J. Ind. Eng. Chem. 81 (2020) 405, https://doi.org/10.1016/j.jiec.2019.09.031.

M. Wang, S. Day, Z. Wu, X. Wan, X. Ye & B. Cheng, “A new type of porous Zn ( II ) metal-organic gel designed for effective adsorption to methyl orange dye”, Colloids Surfaces A Physicochem. Eng. Asp. 628 (2021) 127335, https://doi.org/doi.org/10.1016/j.colsurfa.2021.127335.

S. Yadav, A. Asthana, R. Chakraborty & B. Jain, “Cationic dye removal using novel magnetic / activated charcoal / ? -cyclodextrin / alginate polymer nanocomposite”, Nanomaterials 10 (2020) 1, https://doi.org/10.3390/nano10010170.

S. Sadaf, H.N. Bhatti, S. Ali & K. Rehman, “Removal of Indosol Turquoise FBL dye from aqueous solution by bagasse , a low cost agricultural waste : batch and column study”, Desalin. Water Treat. (2013) 1, https://doi.org/10.1080/19443994.2013.780985.

F. Ghorbani & S. Kamari, “Application of response surface methodology for optimization of methyl orange adsorption by Fegrafting sugar beet bagasse”, Adsorpt. Sci. Technol. 0 (2016) 1, https://doi.org/10.1177/0263617416675625.

X. Peng, G. Yang, Y. Shi, Y. Zhou, M. Zhang & S. Li, “Box Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin”, Sci. Rep. 10 (2020) 1, https://doi.org/10.1038/s41598-020-60339-1.

M.Azmier, N. Azreen, A. Puad &O.Solomon, “Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation”, Water Resour. Ind. 6 (2014) 18, https://doi.org/10.1016/j.wri.2014.06.002.

R. Rajendran, S. Vignesh, A. Sasireka & S. Suganthi, “Designing Ag2O modified g-C3N4 / TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light : synergistic mechanism insight”, Colloids Surfaces A Physicochem. Eng. Asp. 629 (2021) 127472, https://doi.org/10.1016/j.colsurfa.2021.127472.

C. Orha, C. Lazau, D. Ursu & F. Manea, “Effect of TiO2 loading on powder-activated carbon in advanced drinking-water treatment”, Water Soc. IV. 216 (2017) 203, https://doi.org/10.2495/WS170191.

Z. Azhar, R. M. Ramli & Y. H. Noorfidza, “Photodegradation of 1-Butyl3-methylimidazolium chloride [Bmim ] Cl via synergistic effect of adsorption –photodegradation of Fe-TiO2/AC”, Technologies 5 (2017) 1, https://doi.org/10.3390/technologies5040082.

A.Rezaee, G.H.Pourtaghi, A.Khavanin, R.S.Mamoory, M.T.Ghaneian &H.Godini, “Photocatalytic decomposition of gaseous toluene by TiO2 nanoparticles coated on activated carbon”, Iran. J. Environ. Heal. Sci. Eng. 5 (2008) 305.

A. S. Nasir & V. I. Abiola, “Preparation and characterization of synthesized goethite and goethite-date palm seeds charcoal composite”, Ife J. Sci. 19 (2017) 99, https://doi.org/https://dx.doi.org/10.4314/ijs.v19i1.10 Ife.

Z. Anfar, H. Ait Ahsaine, M. Zbair, A. Amedlous, A. Ait El Fakir, A. Jada & N. El Alem, “Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review”, Crit. Rev. Environ. Sci. Technol. 50 (2020) 1043, https://doi.org/10.1080/10643389.2019.1642835.

O. S. Bello, T. A. Fatona, F. S. Falaye, O. M. Osuolale & V. O. Njoku, “Adsorption of Eosin dye from aqueous solution using groundnut hull-based activated carbon: kinetic, equilibrium, and thermodynamic studies”, Environ. Eng. Sci. 29 (2012) 186, https://doi.org/10.1089/ees.2010.0385.

D. Kibanova, M. Trejo, H. Destaillats & J. Cervini-silva, “Applied clay science synthesis of hectorite –TiO2 and kaolinite TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants”, Appl. Clay Sci. 42 (2009) 563, https://doi.org/10.1016/j.clay.2008.03.009.

A. Zawawi, R. M. Ramli & N. Y. Harunl, “Synergistic effect of adsorption-photodegradation of composite TiO2/AC for degradation of 1butyl-3-methylimidazolium chloride”, Malaysian J. Anal. Sci. 22 (2018) 648, https://doi.org/https://doi.org/10.17576/mjas-2018-2204-11.

S. A. Adesokan, A. A. Giwa & I. A. Bello, “Removal of trimethoprim from water using carbonized wood waste as adsorbents”, J. Niger. Soc. Phys. Sci. 3 (2021) 344, https://doi.org/10.46481/jnsps.2021.320.

K. O. Sodeinde, S. O. Olusanya, D. U. Momodu, V. F. Enogheghase & O. S. Lawal, “Waste glass: an excellent adsorbent for crystal violet dye, Pb2+ and Cd2+ heavy metal ions decontamination from wastewater”, J. Niger. Soc. Phys. Sci. 3 (2021) 414, https://doi.org/10.46481/jnsps.2021.261.

R. Elmoubarki, M. Taoufik, A. Moufti, H. Tounsadi & F. Z. Mahjoubi, “Box-Behnken experimental design for the optimization of methylene blue adsorption onto aleppo pine cones”, J. Mater. Environ. Sci. 8 (2017) 2184, http://www.jmaterenvironsci.com/%0ABox-Behnken.

S. O. Azeez & F. A. Adekola, “Sorption of 4-nitroaniline on activated kaolinitic clay and jatropha curcas activated carbon in aqueous solution”, Jordan J. Chem. 11 (2016) 128.

S. O. Azeez & F. A. Adekola, “Kinetics and thermodynamics of sorption of 4-nitrophenol on activated kaolinitic clay and jatropha curcas activated carbon from queous solution”, Pak. J. Anal. Environ. Chem. 17 (2016) 93, https://doi.org/10.21743/pjaec/2016.06.014.

S. O. Azeez, I. O. Saheed, F. A. Adekola, A. A. Jimoh, D. M. Aransiola & Z. A. Abdulsalam, “Box behnken design in the optimization of rhodamine B adsorption onto activated carbon pprepared from delonix regia seeds and pods”, J. Turkish Chem. Soc. Sect. A Chem. 9 (2022) 205, https://doi.org/10.18596/jotcsa.893472.

E. Ben Khalifa, B. Rzig, R. Chakroun, H. Nouagui & B. Hamrouni, “Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent”, Chemom. Intell. Lab. Syst. 189 (2019) 18, https://doi.org/10.1016/j.chemolab.2019.03.014.

K. M. Oghenejoboh, “Biosorption of nickel (II) ion from synthetic wastewater on watermelon rind activated carbon using reponse surface methodology (RSM) optimization approach”, Niger. J. Technol. 37 (2018) 647, https://doi.org/10.4314/njt.v37i3.13.

Z. S. Alman-Abad, H. Pirkharrati & F. Asadzadeh, M. Maleki-Kakelar, “Application of response surface methodology for optimization of zinc elimination from a polluted soil using tartaric acid”, Adsorpt. Sci. Technol. 38 (2020) 79, https://doi.org/10.1177/0263617420916592.

F. Ghorbani & S. Kamari, “Application of response surface methodology for optimization of methyl orange adsorption by Fegrafting sugar beet bagasse”, Adsorpt. Sci. Technol. 35 (2017) 317, https://doi.org/10.1177/0263617416675625.

D. Allouss, Y. Essamlali, O. Amadine, A. Chakir & M. Zahouily, “Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies”, RSC Adv. 9 (2019) 3785, https://doi.org/10.1039/c9ra06450h.

N. Rahman & M. Nasir, “Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies”, Environ. Sci. Pollut. Res. 25 (2018) 26114, https://doi.org/10.1007/s11356018-2566-1.

C. Okoye & D. Chime, “Removal of Eosin yellow dye from aqueous solution using oil bean seed shells based activated carbons: Equilibrium, Kinetics and thermodynamics studies”, Int. J. Sci. Eng. Res. 9 (2018) 140, http://www.ijser.org.

E. O. Oyelude, J. A. M. Awudza & S. K. Twumasi, “Equilibrium, kinetic and thermodynamic study of removal of Eosin yellow from aqueous solution using teak leaf litter powder”, Sci. Rep. 7 (2017) 1, https://doi.org/10.1038/s41598-017-12424-1.

R. Ansari & Z. Mosayebzadeh, “Removal of Eosin Y, an Anionic dye, from aqueous solutions using conducting electroactive polymers”, Iran. Polym. Journa. 19 (2010) 541,. http://journal.ippi.ac.ir.

F. Bandari, F. Safa & S. Shariati, “Application of response surface method for optimization of adsorptive removal of eriochrome black T using magnetic multi-wall carbon nanotube nanocomposite”, Arab J Sci Eng. 40 (2015) 3363, https://doi.org/10.1007/s13369-015-1785-8.

Published

2022-05-29

How to Cite

Optimization by Box Behnken Design for Eosin Yellow Dye Removal from Aqueous Medium using Date Palm Seeds-Porous Carbon@TiO2 Blend. (2022). Journal of the Nigerian Society of Physical Sciences, 4(2), 183-192. https://doi.org/10.46481/jnsps.2022.533

Issue

Section

Original Research

How to Cite

Optimization by Box Behnken Design for Eosin Yellow Dye Removal from Aqueous Medium using Date Palm Seeds-Porous Carbon@TiO2 Blend. (2022). Journal of the Nigerian Society of Physical Sciences, 4(2), 183-192. https://doi.org/10.46481/jnsps.2022.533