Analysis of Adenanthera pavonine L. (Febaceae) Pod and Seed as Potential Pyrolysis Feedstock for Energy production


  • Olugbenga Oludayo Oluwasina Department of Chemistry, Federal University of Technology Akure, Nigeria


Adenanthera pavonine; composition analysis, ultimate analysis; proximate analysis; kinetic, thermodynamics


Though countless possible bioenergy feedstocks are available, the lack of information on their characteristics has made them unusable for industrial purposes. This study revealed the bioenergy potential of seed and pod of Adenanthera pavonine by analyzing their physicochemical, ultimate, proximate, kinetic, thermodynamic, thermal, and higher heat value. The seed presented 19.90%, 2.12%, 24.40% and 14.73% cellulose, hemicellulose, lignin and extractive respectively, while the pod has 21.35%, 25.15%, 23.50% and 11.63%. From the proximate analysis the pod has higher volatile matter (92.79%), and fixed carbon (1.40%), while the seed has higher moisture (6.36%), ash (0.84%), and higher heat value (18.63 MJ kg-1). The kinetic and thermodynamics results present the seed with Ea 23.73 kJmol-1, ?H 14.06 kJmol-1, ?G 10.74 kJmol-1 and ?S -78 Jmol-1, while the pod has 21.3 kJmol-1, ?H 12.20 kJmol-1, ?G 10.98 kJmol-1 and ?S -83 Jmol-1. The probable energy blockade between Ea and ?H for the seed and pod was 9.72. The high value of H: C and low O: C, with the higher heating values recorded for the pod and seed, presented them as better biofuel candidates. The study results have supplied necessary information for the industrial utilization of Adenanthera pavonine seed and pod as valuable feedstocks for bioenergy conversion.  


J. Xing, H. Wang, K. Luo, S. Wang, Y. Bai, Y. & J. Fan, “Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)” Renew Energy 136 (2019) 104. DOI:

C. Wang, L. Li, Z. Zeng, X. Xu, X. Ma, R. Chen, & C. Su, “Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model” Bioresour technol 281 (2019) 412. DOI:

R. Ahorsu, F. Medina, & M. Constantí, “Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review” Energies, 11(2018) 3366. DOI:

G. Liu, Y. Liao, S. Guo, X. Ma, C. Zeng & J. Wu, 2016. Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl Therm Eng 98 (2016) 400. DOI:

R. Arjmandi, A. Hassan, M. K. M. Haafiz, Z. Zakaria, & M. S. Islam, “Effect of hydrolyzed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites” Int. J. Biol. Macromol 82 (2016) 998. DOI:

A. Ibrahim, N. Ramadan, A. Ilias, A. M. Hamad, & S. Al-Zahrani, “Effects of aqueous extraction on the performance and properties of polypropylene/wood composites from Phoenix dactylifera and Acacia tortilis wood” J. Reinf Plast Compos 32 (2013) 476. DOI:

A. E. Aladejare, M. Onifade, & A.I. Lawal, “Application of metaheuristic based artificial neural network and multilinear regression for the prediction of higher heating values of fuels” Int. J. Coal Prep Util (2020)1. DOI:

A. Demirba, “Calculation of higher heating values of biomass fuels” Fuel 76 (1996) 431. DOI:

T. Cordero, F. Marquez, J. Rodriguez-Mirasol, & J. J. Rodriguez, “Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis” Fuel 80 (2001) 1567. DOI:

S. A. Channiwala, & P.P. Parikh, “A unified correlation for estimating HHV of solid, liquid and gaseous fuels” Fuel 81(2002)1051. DOI:

M. Erol, H. Haykiri-Acma, & S. Küçükbayrak, “Calorific value estimation of biomass from their proximate analyses data” Renew energy 35 (2010)170. DOI:

D. R. Nhuchhen, & P. A. Salam, “Estimation of higher heating value of biomass from proximate analysis: A new approach” Fuel, 99 (2012) 55. DOI:

L. Huml, O. Drabek, B. Pohorela, Z. Kotikova, M. Umar, P. Miksatkova, & L. Kokoska, 2020. “Analysis of nutrients and compounds potentially reducing risks of overweightness and obesity-related diseases in raw and roasted Adenanthera pavonina seeds from Samoa. Emir” J Food Agric (2020) 100. DOI:

B. Sen, S. Goswami, G. Devi, H. P. Sarma, & A. Bind, A., “Valorization of Adenanthera pavonina seeds as a potential biosorbent for lead and cadmium removal from single and binary contaminated system” Geol ecol landsc 2 (2018)275 DOI:

L. R. C. Aquino, A. A. M. Macêdo, M. P. F. Graça, M. A. Valente, & C. C Silva, “Preparation and characterization of cement-based hydroxyapatite and galactomannan extracted from Adenanthera pavonina L. seeds” Revista Latinoamericana de Metalurgia y Materiales, 37 (2017) 102

T. K. Lim, “Edible Medicinal and Non-Medicinal Plants”Springer, Dordrecht 2 (2012). DOI:

A. R. Koodalingam, M. Manikandan, M. Indhumathi and E. S. Kaviya “Cytoprotective and anti-inflammatory effects of kernel extract from Adenanthera pavonina on lipopolysaccharide-stimulated rat peritoneal macrophages” Asian Pac J Trop Med 8 (2015) 112. DOI:

I. G. P. Vieira, F. N. P. Mendes, S. C. da Silva, R. T. T. Paim, B. B. da Silva, S. R. Benjamin, E. O. P. T. Florean & M. I. F. Guedes.M“Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice” Asian Pac J Trop Med 11 (2018) 116. DOI:

T204om-97. “Technical Association of the Pulp and Paper Industry (TAPPI). Standard for Alcohol –Benzene Solubility of Wood” (1999).

T222om-98. “Technical Association of the Pulp and Paper Industry (TAPPI). Standard for Acid-insoluble Lignin in Wood and Pulp” (1999).

TUM250. “Technical Association of the Pulp and Paper Industry (TAPPI). Standard for Acid - Soluble Lignin in Wood and Pulp” (1999).

T203cm-99. “Technical Association of the Pulp and Paper Industry (TAPPI). Standard for alpha-, beta and gamma -cellulose determination” (1999)

T. de Paula Protásio, M.V. Scatolino, A.C.C. de Araújo, A.F.C.F. de Oliveira, I.C.R. de Figueiredo, M. R. de Assis, & P.F. Trugilho, “Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood” BioEnergy Res 12 (2019) 626 DOI:

M. Pach, R. Zanzi, & E. Björnbom, E “Torrefied biomass a substitute for wood and charcoal. In 6th Asia-Pacific international symposium on combustion and energy utilization” 20 (2002) Kuala Lumpur.

P. L. Ascough, M. I. Bird, A.C. Scott, M.E. “Collinson, I. Cohen-Ofri, C.E. Snape& K. Le Manquais, K., 2010. Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration” J Archaeol Sci 37 (2010) 1590. DOI:

A. Demirbas, “Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels” Energy Explor Exploit 20 (2002) 105 DOI:

Y.S. Kim, Y.S. Kim & S.H. Kim, “Investigation of thermodynamic parameters in the thermal decomposition of plastic waste? waste lube oil compounds” Environ. Sci. Technol 44 (2010 )5313 DOI:

Y. Xu & B. Chen, “Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis” Bioresour. Technol 146 (2013) 485. DOI:

P. S. Kitumbe, D.O. Onya, A. T Vemba, G. T. Lutete, K. O. Kabangu, A. Covaci, S. Apers, L. Pieters, R.C. Kanyanga, 2013. Chemical composition and nutritive value study of the seed oil of Adenanthera pavonine L. (Fabaceae) growing in Democratic Republic of Congo. Int J Pharmtech Res 5 (2013) 205.

R. A. Nasser, M. Z. Salem, S. Hiziroglu, H. A. Al-Mefarrej, A. S Mohareb, M. Alam, & I.M. Aref, “Chemical analysis of different parts of date palm (Phoenix dactylifera L.) using ultimate, proximate and thermo-gravimetric techniques for energy production” Energies 9 (2016) 374. DOI:

F. Salleh, R. Samsuddin, & M. Husin, “Bio-fuel source from combination feed of sewage sludge and rice waste” Interna Confer Envir Sci Eng 8 (2011) 68

R. A. Nasser, M. Z.M. Salem, H. A. Al-Mefarrej, M.A Abdel-Aal, & S.S Soliman, 2014. “Fuel characteristics of vine prunings (Vitis vinifera L.) as a potential source for energy production” BioResour 9 (2014) 482 DOI:

R. Kumar, N. Chandrashekar, & K.K. Pandey, “Fuel properties and combustion characteristics of Lantana camara and Eupatorium spp” Curr Sci (2009) 930.

P.R. Havilah, P.K. Sharma, & M. Gopinath, M., “Combustion characteristics and kinetic parameter estimation of Lantana camara by thermogravimetric analysis” Biofuels, 10 (2019) 365 DOI:

A. Ahmed, M. S. A. Bakar, A. Razzaq, S. Hidayat, F. Jamil, M. N Amin, R. S. Sukri, N. S. Shah, & Y. K. Park “Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion” Sustainability 13 (2021) 5249. DOI:

Z.U Din & Z.A. Zainal, Biomass integrated gasification–SOFC systems: Technology overview. Energy Rev, 53 (2016) 1356. DOI:

C. L Williams, T. L. Westover, R.M. Emerson, J.S. Tumuluru, & C. Li, 2016.” Sources of biomass feedstock variability and the potential impact on biofuels production” BioEnergy Res 9 (2016) 1. DOI:

R. García, C. Pizarro, A.G. Lavín, & J. L. Bueno, “Biomass proximate analysis using thermogravimetry” Bioresour. Technol 139 (2013) 1. DOI:

O. O. Oluwasina, L.A. Bello, O. Ayodele & O.O. Ojo (2019) “Characterization of Bauhinia monandra Seed and Pod for Bioenergy Potential” EJS (2019) 1. DOI:

I. Lewandowski, J. M. Scurlock, E. Lindvall, M. Christou, 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass bioenerg 25 (2003) 335. DOI:

G. Cavalaglio, F. Cotana, A. Nicolini, V. Coccia, A. Petrozzi, A. Formica, & A. Bertini, “Characterization of various biomass feedstock suitable for small-scale energy plants as preliminary activity of biocheaper project” Sustainability 12 (2020) 6678. DOI:

H. L. Yan, Z. M. Zong, Z. K. Li, J. Kong, Q. X. Zheng, Y. Li, & W.Y. Wei, 2017. “Sweet sorghum stalk liquefaction in supercritical methanol: Effects of operating conditions on product yields and molecular composition of soluble fraction” Fuel Process Technol 155 (2017) 42. DOI:

M.A. Mehmood, G. Ye, H. Luo, C. Liu, S. Malik, I. Afzal, J. Xu, &M.S. Ahmad, M.S., “Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy” Bioresour Technol 228 (2017)18. DOI:

M.S. Ahmad, M.A. Mehmood, O. S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I.A. Nehdi, & G. Qadir, “Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential” Bioresour technol 224 (2017) 708 DOI:

N. Howaniec, & A. Smoli?ski, A., 2011. “Steam gasification of energy crops of high cultivation potential in Poland to hydrogen-rich gas” Int J Hydro Energy 36 (2011) 2038. DOI:

R. K. Mishra, & K. Mohanty, “Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuel”. Biomass Convers Biorefin 8 (2018) 799. DOI:

M. A. Shah, M. N. S. Khan, & V. Kumar, “Biomass residue characterization for their potential application as biofuels” J Therm Anal Calorim 134 (2018) 2137 DOI:

I. Obernberger, T. Brunner, & G. Bärnthaler, “Chemical properties of solid biofuels— significance and impact. Biomass bioenerg 30 (2006) 973 DOI:

I. Y. Eom, J. Y. Kim, T.S. Kim, S.M. Lee, D. Choi, I.G. Choi, & J.W. Choi, “Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass” Bioresour Technol 104 (2012) 687 DOI:

Y. Bin, & C. Hongzhang “Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw” Bioresour. Technol 101(2010) 9114. DOI:

N. Gouda & A.K. Panda, 2019. Determination of kinetic and thermodynamic parameters of thermal degradation of different biomasses for pyrolysis Biocatal Agric Biotechnol 21(2019)101315 DOI:

R. M. Braga, D.M. Melo, F.M., Aquino, J.C. Freitas, M. A, Melo, J. M. Barros, & M.S. Fontes, 2014. “Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass” J Therm Anal Calorim 115 (2) 1915 DOI:

W. Wu, Y. Mei, L. Zhang, R. Liu, & J. Cai, “Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste” Fuel 156 (2015) 71. DOI:

A.K. Vuppaladadiyam, H. Liu, M. Zhao, A.F. Soomro, M.Z. Memon, & V. Dupont, “Thermogravimetric and kinetic analysis to discern synergy during the co-pyrolysis of microalgae and swine manure digestate” Biotechnol biofuels 12 (2019). DOI:

Y. Xiang, Y. Xiang, Y. & L. Wang, “Kinetics of the thermal decomposition of poplar sawdust. Energy Sources, Part A: Recovery” Util Environ Eff 39 (2017) 213 DOI:



How to Cite

Oluwasina, O. O. (2022). Analysis of Adenanthera pavonine L. (Febaceae) Pod and Seed as Potential Pyrolysis Feedstock for Energy production. Journal of the Nigerian Society of Physical Sciences, 4(2), 205–213.



Original Research