Optical, Dielectric and Optoelectronic Properties of Spray Deposited Cu-doped Fe2O3 Thin Films

Authors

  • A. Y. Fasasi Center for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria
  • E. Ajenifuja Center for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria.
  • E. Osagie Center for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria
  • L. O. Animasaun Department of Physics, Electronics & Earth Sciences, Fountain University, Osogbo, Nigeria
  • A. E. Adeoye Technical University, Km 15, Lagos Ibadan Expressway, Ibadan, Oyo State, Nigeria.
  • E. I. Obiajunwa Center for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria

Keywords:

thin film, bandgap, Urbach Energy, refractive index, dispersion parameters, Oscillator parameters

Abstract

Copper-doped hematite thin films were prepared by spray pyrolysis technique using a mixture of ethanol and distilled water precursors. Visual observations showed that aqua precursor produced films of less integrity compared with ethanol that produced thin, uniform and transparent yellowish-brown films that adhered well to the substrate. Composition and thickness measurements determined by RBS revealed that ethanol precursor produced thinner films of 94.45 and 51.77 nm while aqua precursor produced films of 1,370 and 1,120 nm for undoped and Cu-doped Fe2O3 respectively. This is an indication that ethanol solutions produced nano-thick films of high integrity. The composition revealed that only the Cu-doped Fe2O3 deposited by ethanol solution gave composition close to stoichiometric Fe2O3 while the others gave non-stoichiometric Fe(OH)3 . Optical characterization carried out using UV-visible spectrophotometer in transmittance mode indicated that the film thickness was directly proportional to the number of passes which is inversely proportional to the transmittance. Three bandgap determination methods namely; Tauc, Absorption Fitting Spectrum (AFS) and Davis-Mott were employed with the result that Tauc and AFS gave close direct and indirect bandgap energies (Eg) of 3.44 and 1.98 for AFS and 3.43 and 2.32 eV for Tauc respectively. The Urbach tail energy determined was 1,100 meV which is an indication of a broad onset of absorption. The steepness parameter (?) was found to be 7.83 while the electron-phonon (Eph ) coupling energy was found to be 0.85 eV. It was also observed that the refractive index (n) was about 15 times greater than the extinction coefficient (k). In the study of the dispersion parameters using single oscillator and Sellmier models, the values of the single oscillator energy (Eosc ), dispersion energy (Ed), zero frequency dielectric constant, zero frequency refractive index, the average oscillator strength (So), the average oscillator parameter and the dispersion parameters were determined. All the values of the parameters estimated are of the same order of magnitude with other semiconducting materials. The study showed that Cu-doped Fe2O3 could be employed as dielectric material as well as in optoelectronic devices.

Dimensions

Y. Zhu, H. Lu, Y. Lu & X. Pan, “Characterization of SnO2 Films Deposited by D.C. Gas Discharge Activating Reaction Evaporation onto Amorphous and Crystalline-substrates”, Thin Solid Films 224 (1993) 82.

C. C. Chai, J. Peng & B. P. Yan, “Preparation and Gas-Sensing Properties of a-Fe2O3 thin Films”, Journal of Electronic Materials 24 (1995) 799.

M. Chen, G. Diao & X. Zhou, “Nanotechnology 18 (2007) 275606.

R. N. Goyal, D. Kaur & A. K. Pandey, “Growth and characterization of iron oxide nanocrystalline thin films via low-cost ultrasonic spray pyrolysis”, Materials Chemistry and Physics 116 (2009) 638.

M. Ritu, “A Simple and Effective Method of the Synthesis of Nanosized Fe 2 O 3 particles”, IOSR Journal of Applied Chemistry 4 (2013) 41.

M. Aronniemi, J. Lahtinen & P. Hautojarvi, “Characterization of iron oxide thin films”, Surf. Interface Anal. 36 (2004) 1004.

Z. Hubicka, S. Kment, J. Olejncek, M. Cada, T. Kubart, M. Brunclikov, P. Ksirov, P. Adámek & Z. Remes , “Deposition of hematite Fe 2 O 3 thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system”, Thin Solid Films 549 (2013) 184.

SPRINGER Encyclopedia of Soil Science, Edited by Chesworth W. XXVI (2008) 369.

F.H. Fermin, D. Aragon, J. Ardisson, Juan C.R. Aquino, I. Gonzalez, W. A. Macedo, A.H. Coaquira, J. Mantilla, S. W. da Silva, & P. C. Morais, “Effect of the thickness reduction on the structural, surface and magnetic properties of a-Fe2O3 thin films”, Thin Solid Films 607 (2016) 54.

M. R. Belkhedkar, & A. U. Ubale, “Preparation and Characterization of Nanocrystalline a- Fe 2 O 3 Thin Films Grown by Successive Ionic Layer Adsorption and Reaction Method”, International Journal of Materials and Chemistry 4 (2014) 109.

L. A. Marusak, R. Messier, W. B. White, J. Phys. Chem. Solids 41 (1980) 981.

N. Beermann, L. Vayssieres, S. E. Lindquist & A. Hagfeldt, J. Electrochem. Soc. 147 (2000) 2456.

A. Kleiman-Shwarsctein, Y. S. Hu, A. J. Forman, G. D. Stucky, & E. W.McFarland, J. Phys. Chem. C 112 (2008) 15900.

N. C. Debnath, A. B. Anderson, J. Electrochem. Soc. 129 (1982) 2169.

K. Sivula, F. Le Formal, & M. Gratzel, “Solar Water Splitting: Progress Using Hematite (a-Fe2O3) Photoelectrodes”, ChemSusChem 4 (2011) 432.

R. N. Goyal, D. Kaur, & A. K. Pandey, “Growth and characterization of iron oxide nanocrystalline thin films via low-cost ultrasonic spray pyrolysis”, Materials Chemistry and Physics 116 (2009) 638.

M. Mishra & D.-M. Chun, “a-Fe2O3 as a Photocatalytic material: A Review”, Applied Catalysis A, General (2015) 023.

Z. Zhou, Q. Zhang, J. Sun, B. He, J. Guo, Q., Li, C. Li, L. Xie, & Yagang Yao, “Metal-Organic Framework Derived Spindle-like Carbon Incorporated a-Fe2O3 Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors”, ACS Nano 12 (2018) 9333.

S. Gahlawata, N. Rashida & P. P. Ingole, “n-Type Cu 2 O/ a- Fe 2 O 3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance”, Z. Phys. Chem. 232 (2018) 1551.

H. Magnan, D. Stanescu, M. Rioult, E. Fonda, & A. Barbier, Enhanced photoanode properties of epitaxial Ti doped a- Fe 2 O 3 (0001) thin films, Applied Physics Letters 101 133908 (2012).

L. Wang, C-Y. Lee, A. Mazare, K. Lee, J. Muller, E. Spiecker & P. Schmuki, “Enhancing the Water Splitting Efficiency of Sn-Doped Hematite Nanoflakes by Flame Annealing”, Chem. Eur. J. 20 (2014) 88.

A. Annamalai , P, S. Shinde, T. H. Jeon, H. H. Lee , H. G. Kim, W. Choi & J. S. Jang, “Fabrication of superior a-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting”, Solar Energy Materials & Solar Cells 144 (2016) 247.

I. Cesar, K. Sivula, A. Kay, R. Zboril & M. Gratzel, “Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting”, J. Phys. Chem. C 113 (2009) 772.

P. Sharma, P. Kumar, D. Deva, R. Shrivastav, S. Dass & V. R. Satsangi, “Nanostructured Zn-Fe2O3 thin film modified by Fe-TiO2 for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy 35 (2010) 10883.

C. Jorand Sartoretti, M. Ulmann, B.D. Alexander, J. Augustynski & A. Weidenkaff, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, Chemical Physics Letters 376 (2003) 194.

I. K. Kim, Y. G. Kim & T. Y. Park, “Preparation and Characterization on Thin Films of Doped Iron Oxide Semiconductive Electrodes”, Analytical Sciences 7 (1991) 222.

S. Krehula, G. Stefanic, K. Zadro, L. K. Krehula, M. Marcius, S. Music, “Synthesis and properties of iridium-doped hematite (a-Fe2O3)”, Journal of Alloys and Compounds 545 (2012) 200.

L. Wang, C-Y Lee & P. Schmuki, “Ti and Sn co-doped anodic a-Fe 2 O 3 films for efficient water splitting”, Electrochemistry Communications 30 (2013) 21.

C. X. Kronawitter, I. Zegkinoglou, S.-H. Shen, P. Liao, I. S. Cho, O. Zandi, Y.-S. Liu, K. Lashgari, G. Westin, J.-H. Guo, F. J. Himpsel, E. A. Carter, X. L. Zheng, T. W. Hamann, B. E. Koel, S. S. Mao & L. Vayssieres, “Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations”, Energy Environ. Sci. 7 (2014) 3100.

C-Y Lee, L. Wang, Y. Kado, R. Kirchgeorg & P. Schmuki, “Si-doped Fe 2 O 3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting”, Electrochemistry Communications 34 (2013) 308.

P. Kumar, P. Sharma, R. Shrivastav, S. Dass & V. R. Satsangi, “Electrodeposited zirconium-doped a-Fe 2 O 3 thin film for photoelectrochemical water splitting, International Journal of Hydrogen Energy 36 (2011) 2777.

E. L. Tsege, T. Sh. Atabaev, M. A. Hossain, D. Lee, H-K. Kim & Y-H. Hwang, “Cu-doped flower-like hematite nanostructures for efficient water splitting application”, Journal of Physics and Chemistry of Solids 98 (2016) 283.

V. R. Satsangi, S. Kumaria, A. P. Singh, R. Shrivastav & S. Dass, “Nanostructured hematite for photo-electrochemical generation of hydrogen”, International Journal of Hydrogen Energy 33 (2008) 312.

Vibha R. Satsangi, Saroj Kumari, A. P. Singh, R. Shrivastav & S. Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy 33 (2008) 318.

V. Martis, R. Oldman, R. Anderson, M. Fowles, T. Hyde, R. Smith, S. Nikitenko, W. Bras & G. Sankar, “Structure and speciation of chromium ions in chromium doped Fe2O3 catalysts”, Phys. Chem. Chem. Phys. 15 (2013) 168.

K. V. Siva & R. N. Bhowmik, “Structural, magnetic and magneto-electric properties of Cr doped a-Fe2O3”, AIP Conference Proceedings 2115 (2019) 030491.

G. Goyal, A. Dogra, S. Rayaprol, S.D. Kaushik, V. Siruguri, H. Kishan, “Structural and magnetization studies on nanoparticles of Nd doped Fe2O3”, Materials Chemistry and Physics 134 (2012) 133.

I. Kuryliszyn-Kudelskaa, B. Hadzicb, D. Siberac, L. Kilanskia , N. Romcevicb , M. Romcevicb, U. Narkiewiczc and W. Dobrowolskia, “Nanocrystalline ZnO Doped with Fe2O3 — Magnetic and Structural Properties”, Acta Physica Polonica A 119 (2011) 689.

F. S. Freyria, G. Barrera, P. Tiberto, E. Belluso, D. Levy, G. Saracco, P. Allia, E. Garrone, B. Bonelli, “Eu-doped a- Fe 2 O 3 nanoparticles with modified magnetic properties”, Journal of Solid State Chemistry 201 (2013) 311.

Z., P., Wand, N., Hu, W., S. Kormarmeni, “Anode electrodeposition of 3D mesoporous Fe 2 O 3 nonosheets on carbon fabric for flexible solid state asymmetric supercapacitor”. Ceramics international 45 (2019) 10420.

V.D. Nithya, N. Sabari Arul, “Review on a-Fe 2 O 3 based negative electrode for high performance supercapacitors”, Journal of Power Sources 327 (2016) 297.

K. Tang, H. Ma, Y. Tian, Z. Liu, H. Jin, S. Hou, K. Zhou, X. Tian, “3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours”, Virtual and Physical Prototyping 15 (2020) 511.

Y-J. Gu, W. Wen, S. Zheng, J-M. Wu, “Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe2O3 nanoplates on carbon cloth via a versatile molten salt method”, Mater. Chem. Front. 4 (2020) 2744.

F. Han, J. Xu, J. Zhou, J. Tang, W. Tang, “Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors”, Nanoscale 11 (2019) 12477.

C. Liu, Q. Li, J. Cao, Q. Zhang, P. Man, Z. Zhou, C. Li, Y. Yao, “Superstructured a-Fe2O3 nanorods as novel binder-free anodes for high-performing fiber-shaped Ni/Fe battery”, Science Bulletin 65 (2020) 812.

F. Li, Y-L. Liu, G-G. Wang, H-Y. Zhang, B. Zhang, G-Z. Li, Z-P. Wu, “Le-Yang Dang, Jie-Cai Han Few-layered Ti3C2Tx Menes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors”, J. Mater. Chem. A. 7 (2019) 22631.

Q Wang, C. Guo, J. He, S. Yang, Z. Liu, Q. Wang, “Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries”, Journal of Alloys and Compounds 30 (2019) 284.

K Le, M. Gao, D. Xu, Z. Wang, G. Wang, W. Liu, F. Wang, J. Liu, “Polypyrrole-coated Fe2O3 nanotubes constructed from nanoneedles as high-performance anodes for aqueous asymmetric supercapacitors”, Dalton Trans. 49 (2020) 9709.

X.-F, Lu, X-Y. Chen, W. Zhou, Y-X. Tong, G-R. Li, “a-Fe2O3 PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors”, ACS Appl. Mater. Interfaces 7 (2015) 14850.

Y. Luo, J. Luo, J. Jiang, W. Zhou, H. Yang, X. Qi, H. Zhang, H. J. Fan, Denis Y. W. Yu, C. M. Li & T. Yu, “Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications”, Energy Environ. Sci. 5 (2012) 6566.

M, Yang, S, Z. Qing, Y. Cuang, G. Wang, S., Teng, Fei, L. Guohua & A. Zhaoquan, “Cu-Doped a-Fe2O3 Microspheres as Anode Materials for Lithium-Ion Batteries”, Journal of Nanoscience and Nanotechnology 16 (2018) 4296.

F. A.Harraz, A. A. Ismail, S. A. Al-Sayari & A. Al-Hajry, “Novel Fe 2 O 3 /Polypyrrole Nanocomposite with Enhanced Photocatalytic Performance”, Journal of Photochemistry and Photobiology A: Chemistry 299 (2015) 18.

J-C. Wu, W-M. Yan, C-T. Wang, C-H. Wang, Y-H. Pai, K-C. Wang, Y-M. Chen, T-H. Lan & S. Thangavel, “Treatment of Oily Wastewater by the Optimization of Fe2O3 Calcination Temperatures in Innovative Bio-Electron-Fenton Microbial Fuel Cells”, Energies 11 (2018) 565.

T. K. Singh, S. A. Bansal & S. Kumar, “Graphene oxide (GO)/Copper doped Hematite (a-Fe2O3) nanoparticles for organic pollutants degradation applications at room temperature and neutral pH, Materials Research Express 6 (2019) 115026.

H. Feng, L. Tang, J. Tang, G. Zeng, H. Dong, Y. Deng, L. Wang, Y. Liu, X. Ren & Y. Zhou, “Cu- Doped Fe2O3 core-shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater”, Environ. Sci.: Nano 5 (2018) 1595.

S. S. Chahal, A. Kumar & P. Kumar, “Zn Doped a- Fe 2 O 3 : An Efficient Material for UV Driven Photo-catalysis and Electrical Conductivity”, Crystals 273 (2020) 18.

S. Upasen, “Activated carbon-doped with iron oxide nanoparticles (a-Fe 2 O 3 NPs) preparation: particle size, shape, and impurity”, International Journal of ChemTech Research 11 (2018) 33.

O.M. Lemine I. Ghiloufi, M. Bououdina, L. Khezami, M. O. M’hamed, A.T. Hassan, “Nanocrystalline Ni-doped a-Fe2O3 for adsorption of metals from aqueous solution”, Journal of Alloys and Compounds 588 (2014) 592.

A. A. Ismail, “Synthesis and characterization of Y 2 O 3 / Fe 2 O 3 /TiO 2 nanoparticles by sol-gel method”. Applied Catalysis B: Environmental 58 (2005) 115 3.

J. Ouyang, Z. Zhao, S.L. Sui & H. Yang, “Degradation of Congo Red Dye by a Fe 2 O 3 @CeO 2 -ZrO 2 /Palygorskite Composite Catalyst: Synergetic Effects of Fe2O3”, Journal of Colloid and Interface Science 539 (2019) 135.

G. Picasso, M.R. Sun Kou, O. Vargasmachuca, J. Rojas, C. Zavala, A. Lopez & S. Irusta, “Sensors based on porous Pd-doped hematite (a- Fe 2 O 3 ) for LPG detection”, Microporous and Mesoporous Materials 185 (2014) 85.

C. Cantalini, H.T. Sun, M. Faccio, G. Ferri & M. Pelino, “Niobium-doped a-Fe203 semiconductor ceramic sensors for the measurement of nitric oxide gases”, Sensors and Actuators B 24-25 (1995) 671.

P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, G. Lu, N. Yamazoe, “Cu-doped a-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties”, Sensors and Actuators B: Chemical 193 (2014) 622.

N. Funazaki, A. Hemmi, S. Ito, Y. Asano, S. Yamashita, T. Kobayashi & M. Haruta, “Development of carbon monoxide detector doped a-Fe 2 O 3 ”, Sensors and Actuators B 13-14 (1993) 538.

A. M. Schultz, Y. Zhu, S. A. Bojarski, G. S. Rohrer & P. A. Salvador, “Eutaxial growth of hematite Fe2O3 films on perovskite SrTiO3 polycrystalline substrates”, Thin Solid Films 548 (2013) 224.

M. Su, C. He & K. Shih, “Facile synthesis of morphology and size-controlled a-Fe 2 O 3 and Fe 3 O 4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose”, Ceramics International 42 (2016) 14793.

J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, A. Bendavid & P. J. Martin, “Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition”, Thin Solid Films 516 (2008) 1716.

M. N. Batin & V. Popescu, “The influence of deposition time on optical properties of iron oxide films grown on glass substrate by Chemical Bath Deposition”, Optoelectronics and Advanced Materials – Rapid Communications 6 (2012) 729.

A. Lassoued, M. Saber Lassoued, B. Dkhil, A. Gadris & S. Ammar, “Structural, optical and morphological characterization of Cu-doped a-Fe2O3 nanoparticles synthesized through co-precipitation technique”, Journal of Molecular Structure 1148 (2017) 281.

C. Aydin, Sh. A. Mansour, Z. A. Alahmed & F. Yakuphanoglu, “Structural and optical characterization of sol–gel derived boron doped Fe 2 O 3 nanostructured films”, J. Sol-Gel Sci Technol. 62 (2012) 397.

A. Y. Fasasi, E. Osagie, D. Pelemo, E. Obiajunwa, E. Ajenifuja, J. Ajao, G. Osinkolu, W. O. Makinde & A. E. Adeoye, “Effect of Precursor Solvents on the Optical Properties of Copper Oxide Thin Films Deposited Using Spray Pyrolysis for Optoelectronic Applications”, American Journal of Materials Synthesis and Processing 3 (2018) 22.

A.S. Hassanien & A. A. Akl, “Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50 xSex thin films”, Journal of Alloys and Compounds 648 (2015) 290.

A.S. Hassanien & A. A. Akl, “Effect of Se addition on optical and electrical properties of chalcogenide CdSe thin films”, Superlattices and Microstructures 89 (2016) 169.

J. Tauc & A. Menth, “States in the gap”, J Non-Crystalline Solids 8-10 (1972) 585.

N.F. Mott & E.A. Davis, Electron processes in non-crystalline materials, Clarendon, Oxford, 1979.

E.N. Economou & M. H. Cohen, “Anderson’s theory of localization and the Mott-CFO model”, Material Research Bulletin 8 (1970) 590.

“Optical Properties of Condensed Matter and Applications”, Jai Singh (eds.) Wiley Series in Materials foe Electronics and Optoelectronic Applications, John Wiley and Sons Ltd. West Sussex, PO19 8SQ, England, 2006.

J. Melsheimer & D. Ziegler, Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide, Thin Solid Films 129 (1985) 47.

S.J. Ikhmayies & R.N. Ahmad-Bitar, “A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films”, Journal of Materials Research and Technology 2 (2013) 227.

K.A. Aly, A.A. Elnaeim, M. Uosif & O. Abdel-Rahim, “Optical properties of Ge–As–Te thin films”, Physica B: Condensed Matter 406 (2011) 4232.

S. Ikhmayies & R. Ahmad-Bitar, “Thickness dependence of the bandgap energy and Urbach tail for CdS thin films prepared by vacuum evaporation, in: Proceedings of the World renewable energy congress and exhibition XI (2010) 979.

S.H. Wemple & M. Di-Domenico, “Behaviour of the electronic dielectric constant in covalent and ionic materials”, Phys. Rev. B 3 (1971) 1350.

S. H. Wemple, “Refractive-index behaviour of amorphous semiconductors and glasses”, Phys. Rev. B 7 (1973) 3776.

A. S. Hassanien, “Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd 50 S 50-x Se x thin films”, Journal of Alloys and Compounds 671 (2016) 578.

H. Tichá & L. Tichý, “Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides”, Journal of Optoelectronics and Advanced Materials 2 (2002) 386.

Published

2023-06-14

How to Cite

Optical, Dielectric and Optoelectronic Properties of Spray Deposited Cu-doped Fe2O3 Thin Films. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1180. https://doi.org/10.46481/jnsps.2023.1180

Issue

Section

Special Issue : 3rd biennial AScIN conference OAU,  Nigeria

How to Cite

Optical, Dielectric and Optoelectronic Properties of Spray Deposited Cu-doped Fe2O3 Thin Films. (2023). Journal of the Nigerian Society of Physical Sciences, 5(3), 1180. https://doi.org/10.46481/jnsps.2023.1180