Typhoid fever dynamical model with cost-effective optimalcontrol

Authors

  • Kazeem A. Tijani Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
  • Chinwendu E. Madubueze Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria
  • Reuben I. Gweryina Department of Mathematics, Joseph Sarwuan Tarka University, Makurdi, Benue state, Nigeria

Keywords:

Cost-effectiveness analysis, global sensitivity analysis, optimal control analysis, typhoid fever

Abstract

Typhoid fever is a highly communicable and infectious disease that can be fatal and causes severe complications if unattended to timely. The infection, at times, can be more complex, challenging, and impossible to treat as antibiotics become less effective. Hence, the effect of limited clinical efficacy of the antibiotics with corresponding relapse response to treatment on infected humans is considered in this paper by formulating a deterministic model for direct and indirect transmission mode of Typhoid infection. The basic reproduction number is analytically derived and used to implement the global sensitivity analysis. Following the sensitivity analysis result, the optimal control analysis is carried out and simulated numerically with four controls: sanitation and hygiene practice and awareness campaign control, sterilisation and disinfection control, the potency of antibiotics control and screening control. Finally, the cost-effectiveness analysis for infected and susceptible humans with four cases that compared fifteen strategies is analysed. The results indicate that the sanitation and hygiene practice and awareness campaign is good to implement for single control implementation, while for double control implementation, Strategy 6, which is the combination of Strategy 1 and the potency of antibiotics administered to typhoid patients, is the best to consider. Combining Strategy 6 and screening control is the most cost-effective for triple controls. Furthermore, the overall computation of cost-effectiveness among all the most cost-effective with all the controls combined suggests that sanitation and hygiene practice and awareness campaign is the most cost-effective strategy to implement for eradicating typhoid infection in the population and for preventing susceptible populations from contracting the bacteria.

Dimensions

NHS, Typhoid fever. Accesed on 28th May, 2021. www.nhs.uk/ conditions/typhoid-fever/causes/.

CHP, Typhoid fever and paratyphoid fever. Accessed on 25th October, 2023. https://www.chp.gov.hk/en/healthtopics/content/24/48.html.

WHO, Water, sanitation and hygiene interventions and the prevention of diarrhea. Accessed on 29th May, 2021. https://www.int/elena/titles/bba/ wsh diarrhea/en/.

S. Baker, K. E. Holt, A. C. Clements, A. Karkey, A. Arjyal, M. F. Boni, D. Sabina, H. Naomi, K. Samir, T. D. Pham, T. N Trans Vu, I. C. James, D. Christiane, B. Buddha, D. Gordon & J. F. Jeremy.“Combined High-Resolution Genotyping and Geospatial Analysis Reveals Modes of Endemic Urban Typhoid Fever Transmission”, Open Biology 1 (2011) 110008. https://doi.org/10.1098rsob/110008.

A. A. Oluwaseyitan, O. O. Adeyemi, E. Osaze, F. R. David, O. S. Tolulope, A. A. Bisola, B. N. Onyedikachi, O. F. Akolade & O. Ayokunle, “Current Trends in the Epidemiology and Management of Enteric Fever in Africa: A literature review”, Asian Pacific Journal of Tropical Medicine 13 (2020) 204. https://doi.org/10.4103/1995-7645.283515.

S. Doron & S. L. Gorbach, Bacterial infection: overview, International Encyclopedia of Public Health, 2008, pp 273-282.https://doi.org/10.1016/ B978-012373960-5.00596-7.

N. Tim, What you need to know about typhoid. Accessed on 10th May, 2012. www.medicalnewstoday.com/articles/156859.

CDC, Typhoid fever and paratyphoid fever. Accessed on 26th February, 2022 on https://www.cdc.gov/typhoidfever/health-professional.htm

G. Zaman, I. H. Jung, F. M. D. Torres & A. Zeb, “Mathematical modelling and control of infectious disease”, Computational and Mathematical Method in Medicine 2017 (2017) 7149154. https://doi.org/10.1155/ 2017/7149154.

G. T. Tilahum, D. M. Oluwole & M. David,“Modelling and optimal control of typhoid fever disease with cost effective strategies”, Computationa and Mathematical methods in Medicine 2017 (2017) 2324518. https://doi.org/10.1155/2017/2324518

Encyclopedia of Mathematics, Optimal control, mathematical theory of. Accessed on 20th April, 2023. http://encyclopediaofmath.org/index.php? title=Optimal control, mathematical theory of&oldid=48051.

J. A. Lauer, A. Morton & M Bertram, “Cost-Effectiveness Analysis”’, In O. F. Norheim, E. J. Emanuel & Joseph Millum (Eds), Global Health Priority-Setting: Beyond Cost-Effectiveness, New York, Oxford Academic, 2019. https://doi.org/10.1093/oso/9780190912765.003.0005. Accessed 23 April, 2023.

C. E. Madubueze, R. I. Gweryina & K. A. Tijani, “A Dynamic of Typhoid Fever Model with Optimal Control Analysis”, Journal Ratio Mathematica, 41 (2021) 255.http://doi.org/10.23755/rm.v41i0.657

H. Abboubakar & R. Racke,“Mathematical modelling forecasting and optimal control of typhoid fever transmission dynamics”, Chaos, Solitons and Fractals 11074 (2021) 149. https://doi.org/10.1016/j.chaos.2021. 111074.

P. N. Okolo & O. Abu, “An Optimal Control and Cost-Effectiveness Analysis for Typhoid Fever Model”, FUDMA Journal of Science 4 (2020) 437.https://doi.org/10.33003/fjs-2020-0403-258.

J. Mushanyu, F. Nyabadza, G. Muchatibaya, P. Mafuta & G. Nhawu,“Assessing the Potential Impact of Limited Public Health Resources on the Spread and Control of Typhoid”, Journal of Mathematical Biology, 77(2018), 647–670 . https://doi.org/10.1007/ s00285-018-1219-9.

N. Nyerere, S. C. Mpeshe & S. Edward, “Modeling the impact of screening and treatment on the dynamics of typhoid fever”, World Journal of Modeling and Simulation 14 (2018) 298. https://api.semanticscholar.org/ CorpusID:209314425.

O. J. Peter, O. A. Fidelis, I. Adesoye, A. F. Adebisi, O. A. Mchael & A.

O. Festus, “Global stability analysis of typhoid fever model”, Advance in Systems Science and Application 2 (2020) 20. https://doi.org/10.25728/ assa.2020.20.2.792.

S. T. Tresna, Subiyanto & S. Supian, “Mathematical models for typhoid disease transmission: a systematic literature review”, Mathematics 10(2022) 2506. https://doi.org/10.3390/math10142506.

O. J. Peter, M. O. Ibrahim, H. O. Edogbanya, F. A. Oguntolu, K. Oshinubi, A. A. Ibrahim, T. A. Ayoola & J. O. Lawal, “Direct and indirect transmission of typhoid fever model with optimal control”, Results in Physics 27 (2021) 104463. https://doi.org/10.1016/j.rinp.2021.104463.

WHO, Antibiotics resistance. Accessed on 18th February, 2022. https: //www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.

M. Gosh, P. Chandra, P. Sinha & J. B. Shukla, “Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing Human Population”, Non-linear Analysis: Real World Applications 7 (2006) 341. https://doi.org/10.1016/j.nonrwa.2005.03.005.

J. O. Akanni, F. O. Akinpeli, S. Olaniyi, A. T. Oladipo & A. W. Ogunsola, “Modelling financial crime population dynamics: optimal control and cost-effectiveness analysis”, International Journal of Dynamics and Control 8 (2020) 531. https://doi.org/10.1007/s40435-019-00572-3.

M. Kgosimore & G. Kelatlhegile,“Mathematical analysis of typhoid infection with Treatment”, Journal of Mathematical Science: Advance and Applied, 40 (2016) 75. https://doi.org/10.18642/jmsaa 7100121689.

CDC, Typhoid fever and paratyphoid fever. Accessed on 10th January, 2023. https://www.cdc.gov/typhoid-fever/health-professional.html.

WebMD, Typhoid fever. Accessed on 10th January, 2023. https://www. webmd.com/a-to-z-guides/typhoid-fever.

J. M. Mutua, F. B. Wang & N. K. Vaidya, “Modeling malaria and typhoid 19

fever co-infection dynamics”, Mathematical Biosciences 264 (2015) 128. https://doi.org/10.1016/j.mbs.2015.03.014.

S. Mushayabasa, “Modeling the impact of optimal screening on typhoid dynamics”, J. Dyn. Control Int. 4 (2016) 330. https://doi.org/10.1007/ s40435-014-0123-4

P. Van den Driessche & J. Watmough, “Reproduction number and sub threshold endemic equilibrium for compartmental models of disease transmission”, Mathematical Biosciences 180 (2002) 29. https://doi.org/ 10.1016/S0025-5564(02)00108-6.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze & E. F. Mishchenko, The mathematical theory of optimal processes, John Wiley & Sons, London, UK, 1962.

J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Sun, Z. Jim, E. Acheampong & J. F. Gordon, “Optimal control and comprehensive cost Effectiveness for Covid 19”, Results in Physics 33(2022) 105177. https://doi.org/10.1016/j.rinp.2022.105177.

W. A. Flemimg, W. A. & R. W. Rishel, Deterministic and stochastic optimal control, Springer Verlag, New York, 1975.

R. I. Gweryina, C. E. Madubueze, V. P. Baijya & F. E. Esla, “Modeling and analysis of tuberculosis and pneumonia co-infection dynamics with cost-effective strategies”, Results in Control and Optimization 10 (2023) 100210. https://doi.org/10.2139/ssrn.4271333.

H. W. Berhe, O. D. Makinde & D. M. Thevri,“Optimal control and costeffectiveness analysis for dysentery epidemic model”, International Journal of Applied Mathematics and Information Sciences 12 (2007) 1183. https://doi.org/10.18576/amis/120613.

Published

2023-11-28

How to Cite

Typhoid fever dynamical model with cost-effective optimalcontrol. (2023). Journal of the Nigerian Society of Physical Sciences, 5(4), 1579. https://doi.org/10.46481/jnsps.2023.1579

Issue

Section

Original Research

How to Cite

Typhoid fever dynamical model with cost-effective optimalcontrol. (2023). Journal of the Nigerian Society of Physical Sciences, 5(4), 1579. https://doi.org/10.46481/jnsps.2023.1579