A DFT study of the optoelectronic properties of B and Be-doped Graphene

Authors

  • L. O. Agbolade Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar Malaysia https://orcid.org/0000-0002-5942-3011
  • A. K. Y. Dafhalla Department of Computer Engineering, College of Computer Science and engineering, University of Ha’il, KSA
  • D. M. I. Zayan Department of computer science, Applied College, University of Najran, KSA
  • T. Adam Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Nigeria
  • A. Chik aculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibah, Jejawi Arau, 02600, Perlis, Kangar Malaysia
  • A. A. Adewale Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • S. C. B. Gopinath Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar Malaysia
  • U. Hashim Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia https://orcid.org/0000-0001-5118-6069

Keywords:

Graphene, P-type doping, Dielectrics, DFT, Semiconducting devices

Abstract

The electronic and optical properties of Boron (B) and Beryllium (Be)-doped graphene were determined using the ab initio approach based on the generalized gradient approximations within the Full potential linearized Augmented Plane wave formalism (FP-LAPW) formalism. Our findings demonstrated that doping at the edges of graphene is notably stable. In both systems, Be-doped graphene proves more efficient in manipulating the band gap of graphene. Both B and Be induce P-type doping in graphene. B-doped graphene exhibits a negligible magnetic moment of 0.000742, suggesting its suitability for catalytic semiconductor devices. Conversely, Be-doped graphene displays a large magnetic moment of 1.045 µB indicating its potential in spintronics. Additionally, this study elucidates the influence of the dielectric matrices on the optical properties of graphene. These findings underscore a stable and controllable method for modelling graphene at its edges with B and Be atoms, opening new avenues for designing of these devices. 

Dimensions

E. B. Yutomo, F. A. Noor, & T. Winata, “Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyri dinic N-doped graphene-a density-functional study”, RSC Advances 11 (2021) 18371. https://doi.org/10.1039/D1RA01095F.

Y. Zhang, B. Huang, Q. Dong, X. Zhang, C. Chen, J. Yun, Z. Zhang & H. Guo, “Two-dimensional hydrogenated/fluorinated graphyne/graphyne like BN van der Waals heterostructures and their potential application in ultraviolet photodetection: A theoretical prediction”, Applied Sur face Science 611 (2023) 155739. https://doi.org/10.1016/j.apsusc.2022. 155739.

Sumit Kumar, Sunil Kumar, R.N. Rai, Youngil Lee, Thi Hong Chuong Nguyen, Soo Young Kim, Quyet Van Le, & Laxman Singh, “Recent de velopment in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells”, Solar Energy 249 (2023) 606. https://doi.org/10.1016/j.solener.2022.12.013.

Jonathan H Gosling, Sergey V Morozov , Evgenii E Vdovin, Mark T Greenaway , Yurii N Khanin, Zakhar Kudrynskyi, Amalia Patane`, Laurence Eaves, Lyudmila Turyanska, T Mark Fromhold1 & Oleg Makarovsky, “Graphene FETs with high and low mobilities have universal temperature-dependent properties”, Nanotechnology 34 (2023) 125702. https://doi.org/10.1088/1361-6528/aca981.

Thaina Ara ´ ujo Oliveira, Paloma Vieira Silva, Vincent Meunier, Eduardo Costa Girao, “Tuning the carrier mobility and electronic structure of graphene nanoribbons using Stone–Wales defects”, Carbon 201 (2023) 222. https://doi.org/10.1016/j.carbon.2022.08.079.

C. H. Huang, C. H. Wu, R. G. Bikbaev, M. J. Ye, C. W. Chen, T. J. Wang, I. V. Timofeev, W. Lee & K. P. Chen,“Wavelength-and Angle Selective Photodetectors Enabled by Graphene Hot Electrons with TammPlasmon Polaritons”, Nanomaterials 1 13 (2023) 693. https://doi.org/10.3390/nano13040693. 1 13 (2023) 693. https://doi.org/10.3390/nano13040693.

H. Habib, M. Alam, M. Aggarwal, I. S. Wani & S. Husain, “Latest Fabri cation Approaches for Surface Modified Carbon Materials: Carbon Nan otubes and Graphene”, in Surface Modified Carbon Nanotubes, Volume 1: Fundamentals, Synthesis and Recent Trends, American Chemical Society, Washington, 2022, pp. 27-47. https://doi.org/10.1021/bk-2022-1424. ch002.

Huaizhou Jin, Jing-Yu Wang, Xia-Guang Zhang, Weiyi Lin, Weiwei Cai, Yue-Jiao Zhang, Zhi-Lin Yang, Fan-Li Zhang & Jian-Feng Li “Electron transition manipulation under graphene-mediated plasmonic engineering nanostructure”, Nano Research 16 (2022) 5376. https://doi.org/10.1007/s12274-022-5209-2.

M. D. Bhatt, H. Kim, & G. Kim, “Various defects in graphene: a review”, RSC Advances 12 (2022) 21520. http://dx.doi.org/10.1039/D2RA01436J.

J. Sengupta, C. M. Hussain, “Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments”, Nanomaterials 12 (2022) 3146. https://doi.org/10.3390/nano12183146

M. Saeed, P. Palacios, M. D. Wei, E. Baskent, C. Y. Fan, B. Uzlu, K. T. Wang, A. Hemmetter, Z. Wang, D. Neumaier, M. C. Lemme, & R. Negra, “Graphene-Based Microwave Circuits: A Review”, Advanced Materials 34 (2022) 2108473. https://doi.org/10.1002/adma.202108473.

P. C. Sherrell, M. Fronzi, N. A. Shepelin, A. Corletto, D. A. Winkler, M. Ford, J. G. Shapter & A. V. Ellis, “A bright future for engineering piezoelectric 2D crystals”, Chemical Society Reviews 51 (2022) 650. https://doi.org/10.1039/D1CS00844G.

K. T. Santosh , P. Raunak, W. Nannan , K. Vijay , J. S. Olusegun , B. Michał , Z. Yanqiu & K. M. Yogendra, “Progress in Diamanes and Diamanoids Nanosystems for Emerging Technologies”, Advanced Science 9 (2022) 2105770. https://doi.org/10.1002/advs.202105770.

V. Sharma, B. Roondhe, S. Saxena & A. Shukla, “Role of functionalized graphene quantum dots in hydrogen evolution reaction: A density func tional theory study”, International Journal of Hydrogen Energy, 47 (2022) 41748. https://doi.org/10.1016/j.ijhydene.2022.02.161.

E. B. Yutomo, F. A. Noor & T. Winata, “Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyri dinic N-doped graphene-a density-functional study”, RSC Advances 11 (2021) 18371. https://doi.org/10.1039/D1RA01095F.

C. Tian, W. Miao, L. Zhao & J. Wang, “Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials”, Reviews in Physics 10 (2023) 100082. https://doi.org/10.1016/j.revip.2023.100082

N. Sohal, B. Maity, & S. Basu, “Recent advances in heteroatom-doped graphene quantum dots for sensing applications”, RSC Advances 11 (2021) 25586. https://doi.org/10.1039/d1ra04248c

P. Błon´ski, J. Tucek, Z. Sofer, V. Mazanek, M. Petr, M. Pumera, & R. Zboril, “Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene”, Journal of the American Chemical Society 139 (2017) 3171. https://doi.org/10.1021/jacs.6b12934

Y. P. Lin, Y. Ksari, J. Prakash, L. Giovanelli, J. C. Valmalette & J. M Themlin, “Nitrogen-doping processes of graphene by a versatile plasma based method”, Carbon 73 (2014) 216. https://www.sciencedirect.com/science/article/abs/pii/S0008622314001985.

S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, & J. Bai, “Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective”, Composites Part B: Engi neering, 246 (2022) 110232. https://doi.org/10.1016/j.compositesb.2022.110232.

X. Zhou, C. Zhao, G. Wu, J. Chen, & Y. Li, “DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene”, Applied Surface Science 459 (2018) 354 https://doi.org/10.1016/j.apsusc.2018.08.015

Q. Luo, S. Yin, X. Sun, Y. Tang, Z. Feng, & X. Dai, “Density functional theory study on the electronic, optical and adsorption properties of Ti-, Fe- and Ni- doped graphene”, Diam Relat Mater 128 (2022) 109290. https://doi.org/10.1016/j.diamond.2022.109290.

Y. Fujimoto, “Formation, Energetics, and Electronic Properties of Graphene Monolayer and Bilayer Doped with Heteroatoms”, Advances in Condensed Matter Physics 2015 (2015) 571490. https://doi.org/10.1155/2015/571490

S. Ullah, P. A. Denis, & F. Sato, “Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: A DFT study”, Applied Material Today 9 (2017) 333. https://doi.org/10.1016/J.APMT.2017.08.013

O. Olaniyan & H. Pretoria, Ab initio study of the beryllium-sulphur and beryllium-nitrogen co-doped graphene for nanoelectronic and optoelec tronic devices. Thesis, University of Pretoria, 2018. http://hdl.handle.net/2263/70465.

M. Yan, Z. Guo, Q. Li, Z. Dai, A. Yu, & C. Sun, “Density Functional Theory Studies on Boron-Modified Graphene Edges for Electroreduction of Nitrogen”, ACS Applied Nano Materials 5 (2022) 11270. https://doi.org/10.1021/acsanm.2c02399.

Y. Yamada, H. Tanaka, S. Kubo, & S. Sato, “Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photo electron spectroscopy”, Carbon 185 (2021) 342. https://doi.org/10.1016/j.carbon.2021.08.085.

J. S. David, Characterization and Evaluation of Materials, Optical and Electronic Materials, Metallic Materials, Pseudopotentials and the LAPW Method Second Edition, Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2312-0.

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, & L. D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids”, Journal of Chemical Physics 152 (2020) 074101. https://doi.org/10.1063/1.5143061.

M. Ernzerhof & G. E. Scuseria, “Assessment of the Perdew-Burke Ernzerhof exchange-correlation functional”, Journal of Chemical Physics 110 (1999) 5029. https://doi.org/10.1063/1.478401.

J. P. Perdew, K. Burke, & Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Physical Review B 54 (1996) 16533. https://doi.org/10.1103/PhysRevB.54.16533.

A. A. Adewale, , A. Chik, T. Adam, T. M. Joshua, & M. O. Durowoju, “Optoelectronic behavior of ZnS compound and its alloy: A first principle approach”, Materials Today Communications 27 (2021) 102077. https://doi.org/10.1016/j.mtcomm.2021.102077

H. J. Monkhorst & J. D. Pack, “Special points for Brillonin-zone integra tions” 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188

O. Olaniyan, R. E. Maphasha, M. J. Madito, A. A. Khaleed, E. Igumbor, & N. Manyala, “A systematic study of the stability, electronic and optical properties of beryllium and nitrogen co-doped graphene”, Carbon 129 (2018) 207. https://doi.org/10.1016/j.carbon.2017.12.014

B. Bhattachary & U. Sarkar, “The Effect of Boron and Nitrogen Doping in Electronic, Magnetic, and Optical Properties of Graphyne”, The Journal of Physical Chemistry C 120 (2016) 26793. https://doi.org/10.1021/acs.jpcc.6b07478.

C. Ambrosch-Draxl & J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method”, Computer Physics Communications 175 (2006) 1. https://doi.org/10.1016/j.cpc.2006.03.005.

V. V. Tuan , D. P. Khang , N. P. Tri , D. V. Dat , T. D. Phuc , V. N. Chuong , V. P. Huynh, T. T. B. Nguyen, D. M. Hoatdi & N. H. Nguyen, “First-principles prediction of chemically functionalized In N monolay ers: Electronic and optical properties”, RSC Advances 10 (2020) 10731. https://doi.org/10.1039/D0RA01025A.

P. Nath, S. Chowdhury, D. Sanyal, & D. Jana, “Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet”, Carbon 73 (2014) 275. https://doi.org/10.1016/j.carbon.2014.02.064.

M. Rizwan, S. Aleena, M. Shakil, T. Mahmood, A. A. Zafar, T. Hussain, & M.H. Farooq, “A computational insight of electronic and optical properties of Cd-doped BaZrO3”, Chinese Journal of Physics 66 (2020) 318. https://doi.org/10.1016/j.cjph.2020.04.022

M. Houmad, H. Zaari, A. Benyoussef, A. el Kenz, & H. Ez-Zahraouy,“Optical conductivity enhancement and band gap opening with silicon doped graphene”, Carbon 94 (2015) 1021. https://doi.org/10.1016/j.carbon.2015.07.033

R. Sharma, S. Khan, V. Goyal, V. Sharma, & K. S. Sharma, “Investigation on effect of boron and nitrogen substitution on electronic structure of graphene”, FlatChem 1 (2017) 20. https://doi.org/10.1016/j.flatc.2016.10.001

R. Saito, A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, & M. S. Dres selhaus, “Optical properties of carbon nanotubes and nanographene”, in Oxford Handbook of Nanoscience and Technology, 2010, 1–30. https://doi.org/10.1093/oxfordhb/9780199533053.013.1

T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, & E. Liu “Interface and Doping Effects on Li Ion Storage Behavior of Graphene/Li2O”, The Journal of Physical Chemistry C 121 (2017) 19559. https://doi.org/10.1021/acs.jpcc.7b04642.

P. Rani & V. K. Jindal, “Designing band gap of graphene by B and N dopant atoms”, RSC Advances 3 (2013) 802. https://doi.org/10.1039/c2ra22664b

K. Zhao, W. Zhang5, L. Peng, M. Jiang, W. Wang, X. He, Y. Wang & L. Gao “First-principle study on electronic and optical properties of (Al, P, Al-P) doped graphene”, Material Research Express 7 (2020) 105013. https://doi.org/10.1088/2053-1591/abc125.

T. Ando, “The electronic properties of graphene and carbon nantubes”, Npg Asia Materials 1 (2009) 17. https://www.nature.com/articles/am200923.

B. Y. Wang , H. Wang , L. Y. Chen , H. C. Hsueh , X. Li, J. Guo , Y. Luo , J. W. Chiou, W. H. Wang , P.H Wang , K. H. Chen , Y. C. Chen, L. C. Chen, C. H. Chen, J. Wang & W. F. Pong “Nonlinear bandgap opening behavior of BN co-doped graphene”, Carbon 107 (2016) 857. https://doi.org/10.1016/J.CARBON.2016.06.091.

S. Mukherjee & T. P. Kaloni, “Electronic properties of boron and nitrogen-doped graphene: A first principles study”, Journal of Nanoparticle Research 14 (2012) 1059. https://doi.org/10.1007/s11051-012-1059-2.

B. Bhattacharya & U. Sarkar, “The Effect of Boron and Nitrogen Doping in Electronic, Magnetic, and Optical Properties of Graphyne”, The Jour nal of Physical Chemistry C 120 (2016) 26793. https://doi.org/10.1021/acs.jpcc.6b07478.

S. Ullah, P. A. Denis, & F. Sato, “Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: A DFT study”, Applied Material Today 9 (2017) 333. https://doi.org/10.1016/J.APMT.2017.08.013.

X. S. Dai, T. Shen, & H. C. Liu, “DFT study on electronic and optical properties of graphene modified by phosphorus”, Material Research Ex press 6 (2019) 085635. https://doi.org/10.1088/2053-1591/ab29bc.

M. L. Ould NE, A. G. el hachimi, M. Boujnah, A. Benyoussef, & A. el Kenz, “Comparative study of electronic and optical properties of graphene and germanene: DFT study”, Optik (Stuttg) 158 (2018) 693. https://doi.org/10.1016/j.ijleo.2017.12.089

Z. M. Wang, , A. Woag & G. Salamo, Lecture notes in nanoscale science and technology, Springer book series, 2023. https://www.springer.com/series/7544

H. Ahmad, J. Lindemuth, Z. Engel, C. M. Matthews, T. M. McCrone, & W. A. Doolittle, “Substantial P-Type Conductivity of AlN Achieved via Beryllium Doping”, Advanced Materials 33 (2021) 2104497. https://doi.org/10.1002/adma.202104497

A. C. F. Serraon, J. A. D. Del Rosario, P. Y. A. Chuang, M. N. Chong, Y. Morikawa, A. A. B. Padama & J. D. Ocon, “Alkaline earth atom doping induced changes in the electronic and magnetic properties of graphene: a density functional theory study”, RSC Advices 11 (2021) 6268. https://doi.org/10.1039/D0RA08115A.

X. Y. Liang, N. Ding, S. P. Ng, & C. M. L. Wu, “Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study”, Applied Surfuce Science, 411 (2017) 11. https://doi.org/10.1016/J.APSUSC.2017.03.178

V. v. Chaban & O. v. Prezhdo, “Boron doping of graphene-pushing the limit”, Nanoscale 8 (2016) 15521. https://doi.org/10.1039/c6nr05309b

A. A. Adewale, A. Chik, O. K. Yusuff, S. A. Ayinde, & Y. K. Sanusi, “First principle calculation of structural, electronic and optical proper ties of CdS and doped Cdx-1AxS (A=Co, Fe, Ni) compounds”, Mate rial Today Commununication 26 (2021) 101882. https://doi.org/10.1016/j.mtcomm.2020.101882.

A. Omidvar, “Electronic structure tuning and band gap opening of nitro gen and boron doped holey graphene flake: The role of single/dual doping”, Material Chemistry Physic 202 (2017) 258. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.025.

F. Lopez-Ur ´ ´ıas, M. Terrones, & H. Terrones, “Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes”, Carbon 84 (2015) 317. https://doi.org/10.1016/J.CARBON.2014.11.053.

O. Olaniyan, E. Igumbor, A. A. Khaleed, A. A. Mirghni, and N. Manyala, “Ab-initio study of the optical properties of beryllium-sulphur co-doped graphene”, AIP Advances 9 (2019) 025221. https://doi.org/10.1063/1.5060708.

X. He, Z.-X. Chen, & Z. Li, “Communication: Emergence of localized magnetic moment at adsorbed beryllium dimer on graphene”, Journal of Chemical Physics 133 (2010) 231104. https://doi.org/10.1063/1.3524830.

N. Dhar & D. Jana, “Effect of beryllium doping and vacancy in band structure, magnetic and optical properties of free standing germanene”, Current Applied Physics 17 (2017) 1589. https://doi.org/10.1016/j.cap.2017.08.022

H. Ferjani, Y. ben Smida, D. C. Onwudiwe, N. Y. Elamin, S. Ezzine, & N. S. Almotlaq, “An Experimental and Theoretical Study of the Optical Properties of (C 2 H 7 N 4 O) 2 BiCl 5 for an Optoelectronic Application”, Inorganics 10 (2022) 48. https://doi.org/10.3390/inorganics10040048

M. Junaid Iqbal Khan, Zarfishan Kanwal, Masood Yousaf, Azeem Nabi, Javed Ahmad, Abid Latif, & Hamid Ullah “Investigating structural, electronic and optical properties of CdS:Cr (A GGA and GGA+U study”, Solid State Sciences 108 (2020) 106437. https://doi.org/10.1016/j.solidstatesciences.2020.106437.

O. V. Sedelnikova, L. G. Bulusheva, & A. V. Okotrub, “Ab initio study of dielectric response of rippled graphene”, Journal of Chemical Physics 134 (2011) 24. https://doi.org/10.1063/1.3604818

X. Dai, T. Shen, Y. Feng, B. Yang, & H. Liu, “DFT investigations on photoelectric properties of graphene modified by metal atoms”, Ferroelectrics 568 (2020) 143. https://doi.org/10.1080/00150193.2020.1811038

R. Santosh & V. Kumar, Optical properties of hydrogenated graphene using first-principle calculations, 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, (2018) 1-3. https://doi.org/10.1109/UPCON.2018.8596939

X. S. Dai, T. Shen, Y. Feng, & H. C. Liu, “Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study”, Physica B Condens Matter 574 (2019) 411660. https://doi.org/10.1016/j. physb.2019.411660

P. Rani, G. S. Dubey, & V. K. Jindal, “DFT study of optical proper ties of pure and doped graphene”, Physica E: Low-dimensional Systems and Nanostructures 62 (2014) 28. https://doi.org/10.1016/j.physe.2014.04.010

S. Hussain, , G. Murtaza, S. H. Khan, A. Khan, M. A. Ali, M. Faizan, A. Mahmood & R. Khenata, “First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) chalcogenides”, Material Research Bulletin 79 (2016) 73. https://doi.org/10.1016/j.materresbull.2016.03.001.

S. Hussain, L. Guo, H. Louis, S. Zhu, & T. He, “First-principles calculations of wurtzite ZnS1-xSex solid solutions for photocatalysis”, Material Today Communication 21(2019) 100672. https://doi.org/10.1016/j.mtcomm.2019.100672

M. J. Iqbal Khan & Z. Kanwal, “Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study)”, Optik 193 (2019) 16298. https://doi.org/10.1016/j.ijleo. 2019.162985

M. A. Lahiji & A. A. Ziabari, “First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers”, Physica B: Condensed Matter 501 146. https://doi.org/10.1016/j.physb.2016.08.033

O. Olaniyan, E. Igumbor, A. A. Khaleed, A. A. Mirghni, & N. Manyala, “Ab-initio study of the optical properties of beryllium-sulphur co-doped graphene, AIP Advances 9 (2019) 025221. https://doi.org/10.1063/1.5060708.

P. Rani, G. S. Dubey, & V. K. Jindal, “DFT study of optical properties of pure and doped graphene”, Physica E: Low-dimensional systems and nanostructures 62 (2014) 28. https://doi.org/10.1016/J.PHYSE.2014.04.010

R. F. Egerton, “Electron energy-loss spectroscopy in the TEM”, Reports on Progress in Physics 72 ( 2009) 016502. https://doi.org/10.1088/0034-4885/72/1/016502.

T. Stauber & G. Gomez-Santos, “Plasmons in layered structures including ´graphene”, New Journal of Physics 14 (2012) 105018. https://doi.org/10.1088/1367-2630/14/10/105018.

T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, & P. R. Briddon “Plasmon spectroscopy offree-standing graphene films”, Physical Review B: Condensed Matter and Materials Physics 77 2008. https://doi.org/10.1103/PhysRevB.77.233406

P. Nath, S. Chowdhury, D. Sanyal, & D. Jana, “Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet”, Carbon 73 (2014) 275. https://doi.org/10.1016/j.carbon.2014.02.064.

M. A. Lahiji & A. A. Ziabari, “First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers”, Physica B: Condensed Matter 501 (2016) 146. https://doi.org/10.1016/j.physb.2016.08.033.

1730

Published

2024-03-06

How to Cite

A DFT study of the optoelectronic properties of B and Be-doped Graphene. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1730. https://doi.org/10.46481/jnsps.2024.1730

Issue

Section

Physics & Astronomy

How to Cite

A DFT study of the optoelectronic properties of B and Be-doped Graphene. (2024). Journal of the Nigerian Society of Physical Sciences, 6(1), 1730. https://doi.org/10.46481/jnsps.2024.1730