A DFT study of the optoelectronic properties of B and Be-doped Graphene
Authors
- L. O. Agbolade Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar Malaysia https://orcid.org/0000-0002-5942-3011
- A. K. Y. Dafhalla Department of Computer Engineering, College of Computer Science and engineering, University of Ha’il, KSA
- D. M. I. Zayan Department of computer science, Applied College, University of Najran, KSA
- T. Adam Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Nigeria
- A. Chik aculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibah, Jejawi Arau, 02600, Perlis, Kangar Malaysia
- A. A. Adewale Department of Pure and Applied Physics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- S. C. B. Gopinath Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar Malaysia
- U. Hashim Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Malaysia https://orcid.org/0000-0001-5118-6069
Keywords:
Graphene, P-type doping, Dielectrics, DFT, Semiconducting devicesAbstract
The electronic and optical properties of Boron (B) and Beryllium (Be)-doped graphene were determined using the ab initio approach based on the generalized gradient approximations within the Full potential linearized Augmented Plane wave formalism (FP-LAPW) formalism. Our findings demonstrated that doping at the edges of graphene is notably stable. In both systems, Be-doped graphene proves more efficient in manipulating the band gap of graphene. Both B and Be induce P-type doping in graphene. B-doped graphene exhibits a negligible magnetic moment of 0.000742, suggesting its suitability for catalytic semiconductor devices. Conversely, Be-doped graphene displays a large magnetic moment of 1.045 µB indicating its potential in spintronics. Additionally, this study elucidates the influence of the dielectric matrices on the optical properties of graphene. These findings underscore a stable and controllable method for modelling graphene at its edges with B and Be atoms, opening new avenues for designing of these devices.
E. B. Yutomo, F. A. Noor, & T. Winata, “Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyri dinic N-doped graphene-a density-functional study”, RSC Advances 11 (2021) 18371. https://doi.org/10.1039/D1RA01095F.
Y. Zhang, B. Huang, Q. Dong, X. Zhang, C. Chen, J. Yun, Z. Zhang & H. Guo, “Two-dimensional hydrogenated/fluorinated graphyne/graphyne like BN van der Waals heterostructures and their potential application in ultraviolet photodetection: A theoretical prediction”, Applied Sur face Science 611 (2023) 155739. https://doi.org/10.1016/j.apsusc.2022. 155739.
Sumit Kumar, Sunil Kumar, R.N. Rai, Youngil Lee, Thi Hong Chuong Nguyen, Soo Young Kim, Quyet Van Le, & Laxman Singh, “Recent de velopment in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells”, Solar Energy 249 (2023) 606. https://doi.org/10.1016/j.solener.2022.12.013.
Jonathan H Gosling, Sergey V Morozov , Evgenii E Vdovin, Mark T Greenaway , Yurii N Khanin, Zakhar Kudrynskyi, Amalia Patane`, Laurence Eaves, Lyudmila Turyanska, T Mark Fromhold1 & Oleg Makarovsky, “Graphene FETs with high and low mobilities have universal temperature-dependent properties”, Nanotechnology 34 (2023) 125702. https://doi.org/10.1088/1361-6528/aca981.
Thaina Ara ´ ujo Oliveira, Paloma Vieira Silva, Vincent Meunier, Eduardo Costa Girao, “Tuning the carrier mobility and electronic structure of graphene nanoribbons using Stone–Wales defects”, Carbon 201 (2023) 222. https://doi.org/10.1016/j.carbon.2022.08.079.
C. H. Huang, C. H. Wu, R. G. Bikbaev, M. J. Ye, C. W. Chen, T. J. Wang, I. V. Timofeev, W. Lee & K. P. Chen,“Wavelength-and Angle Selective Photodetectors Enabled by Graphene Hot Electrons with TammPlasmon Polaritons”, Nanomaterials 1 13 (2023) 693. https://doi.org/10.3390/nano13040693. 1 13 (2023) 693. https://doi.org/10.3390/nano13040693.
H. Habib, M. Alam, M. Aggarwal, I. S. Wani & S. Husain, “Latest Fabri cation Approaches for Surface Modified Carbon Materials: Carbon Nan otubes and Graphene”, in Surface Modified Carbon Nanotubes, Volume 1: Fundamentals, Synthesis and Recent Trends, American Chemical Society, Washington, 2022, pp. 27-47. https://doi.org/10.1021/bk-2022-1424. ch002.
Huaizhou Jin, Jing-Yu Wang, Xia-Guang Zhang, Weiyi Lin, Weiwei Cai, Yue-Jiao Zhang, Zhi-Lin Yang, Fan-Li Zhang & Jian-Feng Li “Electron transition manipulation under graphene-mediated plasmonic engineering nanostructure”, Nano Research 16 (2022) 5376. https://doi.org/10.1007/s12274-022-5209-2.
M. D. Bhatt, H. Kim, & G. Kim, “Various defects in graphene: a review”, RSC Advances 12 (2022) 21520. http://dx.doi.org/10.1039/D2RA01436J.
J. Sengupta, C. M. Hussain, “Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments”, Nanomaterials 12 (2022) 3146. https://doi.org/10.3390/nano12183146
M. Saeed, P. Palacios, M. D. Wei, E. Baskent, C. Y. Fan, B. Uzlu, K. T. Wang, A. Hemmetter, Z. Wang, D. Neumaier, M. C. Lemme, & R. Negra, “Graphene-Based Microwave Circuits: A Review”, Advanced Materials 34 (2022) 2108473. https://doi.org/10.1002/adma.202108473.
P. C. Sherrell, M. Fronzi, N. A. Shepelin, A. Corletto, D. A. Winkler, M. Ford, J. G. Shapter & A. V. Ellis, “A bright future for engineering piezoelectric 2D crystals”, Chemical Society Reviews 51 (2022) 650. https://doi.org/10.1039/D1CS00844G.
K. T. Santosh , P. Raunak, W. Nannan , K. Vijay , J. S. Olusegun , B. Michał , Z. Yanqiu & K. M. Yogendra, “Progress in Diamanes and Diamanoids Nanosystems for Emerging Technologies”, Advanced Science 9 (2022) 2105770. https://doi.org/10.1002/advs.202105770.
V. Sharma, B. Roondhe, S. Saxena & A. Shukla, “Role of functionalized graphene quantum dots in hydrogen evolution reaction: A density func tional theory study”, International Journal of Hydrogen Energy, 47 (2022) 41748. https://doi.org/10.1016/j.ijhydene.2022.02.161.
E. B. Yutomo, F. A. Noor & T. Winata, “Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyri dinic N-doped graphene-a density-functional study”, RSC Advances 11 (2021) 18371. https://doi.org/10.1039/D1RA01095F.
C. Tian, W. Miao, L. Zhao & J. Wang, “Graphene nanoribbons: Current status and challenges as quasi-one-dimensional nanomaterials”, Reviews in Physics 10 (2023) 100082. https://doi.org/10.1016/j.revip.2023.100082
N. Sohal, B. Maity, & S. Basu, “Recent advances in heteroatom-doped graphene quantum dots for sensing applications”, RSC Advances 11 (2021) 25586. https://doi.org/10.1039/d1ra04248c
P. Błon´ski, J. Tucek, Z. Sofer, V. Mazanek, M. Petr, M. Pumera, & R. Zboril, “Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene”, Journal of the American Chemical Society 139 (2017) 3171. https://doi.org/10.1021/jacs.6b12934
Y. P. Lin, Y. Ksari, J. Prakash, L. Giovanelli, J. C. Valmalette & J. M Themlin, “Nitrogen-doping processes of graphene by a versatile plasma based method”, Carbon 73 (2014) 216. https://www.sciencedirect.com/science/article/abs/pii/S0008622314001985.
S. Yu, B. Guo, T. Zeng, H. Qu, J. Yang, & J. Bai, “Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective”, Composites Part B: Engi neering, 246 (2022) 110232. https://doi.org/10.1016/j.compositesb.2022.110232.
X. Zhou, C. Zhao, G. Wu, J. Chen, & Y. Li, “DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene”, Applied Surface Science 459 (2018) 354 https://doi.org/10.1016/j.apsusc.2018.08.015
Q. Luo, S. Yin, X. Sun, Y. Tang, Z. Feng, & X. Dai, “Density functional theory study on the electronic, optical and adsorption properties of Ti-, Fe- and Ni- doped graphene”, Diam Relat Mater 128 (2022) 109290. https://doi.org/10.1016/j.diamond.2022.109290.
Y. Fujimoto, “Formation, Energetics, and Electronic Properties of Graphene Monolayer and Bilayer Doped with Heteroatoms”, Advances in Condensed Matter Physics 2015 (2015) 571490. https://doi.org/10.1155/2015/571490
S. Ullah, P. A. Denis, & F. Sato, “Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: A DFT study”, Applied Material Today 9 (2017) 333. https://doi.org/10.1016/J.APMT.2017.08.013
O. Olaniyan & H. Pretoria, Ab initio study of the beryllium-sulphur and beryllium-nitrogen co-doped graphene for nanoelectronic and optoelec tronic devices. Thesis, University of Pretoria, 2018. http://hdl.handle.net/2263/70465.
M. Yan, Z. Guo, Q. Li, Z. Dai, A. Yu, & C. Sun, “Density Functional Theory Studies on Boron-Modified Graphene Edges for Electroreduction of Nitrogen”, ACS Applied Nano Materials 5 (2022) 11270. https://doi.org/10.1021/acsanm.2c02399.
Y. Yamada, H. Tanaka, S. Kubo, & S. Sato, “Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photo electron spectroscopy”, Carbon 185 (2021) 342. https://doi.org/10.1016/j.carbon.2021.08.085.
J. S. David, Characterization and Evaluation of Materials, Optical and Electronic Materials, Metallic Materials, Pseudopotentials and the LAPW Method Second Edition, Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2312-0.
P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, & L. D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids”, Journal of Chemical Physics 152 (2020) 074101. https://doi.org/10.1063/1.5143061.
M. Ernzerhof & G. E. Scuseria, “Assessment of the Perdew-Burke Ernzerhof exchange-correlation functional”, Journal of Chemical Physics 110 (1999) 5029. https://doi.org/10.1063/1.478401.
J. P. Perdew, K. Burke, & Y. Wang, “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Physical Review B 54 (1996) 16533. https://doi.org/10.1103/PhysRevB.54.16533.
A. A. Adewale, , A. Chik, T. Adam, T. M. Joshua, & M. O. Durowoju, “Optoelectronic behavior of ZnS compound and its alloy: A first principle approach”, Materials Today Communications 27 (2021) 102077. https://doi.org/10.1016/j.mtcomm.2021.102077
H. J. Monkhorst & J. D. Pack, “Special points for Brillonin-zone integra tions” 13 (1976) 5188. https://doi.org/10.1103/PhysRevB.13.5188
O. Olaniyan, R. E. Maphasha, M. J. Madito, A. A. Khaleed, E. Igumbor, & N. Manyala, “A systematic study of the stability, electronic and optical properties of beryllium and nitrogen co-doped graphene”, Carbon 129 (2018) 207. https://doi.org/10.1016/j.carbon.2017.12.014
B. Bhattachary & U. Sarkar, “The Effect of Boron and Nitrogen Doping in Electronic, Magnetic, and Optical Properties of Graphyne”, The Journal of Physical Chemistry C 120 (2016) 26793. https://doi.org/10.1021/acs.jpcc.6b07478.
C. Ambrosch-Draxl & J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method”, Computer Physics Communications 175 (2006) 1. https://doi.org/10.1016/j.cpc.2006.03.005.
V. V. Tuan , D. P. Khang , N. P. Tri , D. V. Dat , T. D. Phuc , V. N. Chuong , V. P. Huynh, T. T. B. Nguyen, D. M. Hoatdi & N. H. Nguyen, “First-principles prediction of chemically functionalized In N monolay ers: Electronic and optical properties”, RSC Advances 10 (2020) 10731. https://doi.org/10.1039/D0RA01025A.
P. Nath, S. Chowdhury, D. Sanyal, & D. Jana, “Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet”, Carbon 73 (2014) 275. https://doi.org/10.1016/j.carbon.2014.02.064.
M. Rizwan, S. Aleena, M. Shakil, T. Mahmood, A. A. Zafar, T. Hussain, & M.H. Farooq, “A computational insight of electronic and optical properties of Cd-doped BaZrO3”, Chinese Journal of Physics 66 (2020) 318. https://doi.org/10.1016/j.cjph.2020.04.022
M. Houmad, H. Zaari, A. Benyoussef, A. el Kenz, & H. Ez-Zahraouy,“Optical conductivity enhancement and band gap opening with silicon doped graphene”, Carbon 94 (2015) 1021. https://doi.org/10.1016/j.carbon.2015.07.033
R. Sharma, S. Khan, V. Goyal, V. Sharma, & K. S. Sharma, “Investigation on effect of boron and nitrogen substitution on electronic structure of graphene”, FlatChem 1 (2017) 20. https://doi.org/10.1016/j.flatc.2016.10.001
R. Saito, A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, & M. S. Dres selhaus, “Optical properties of carbon nanotubes and nanographene”, in Oxford Handbook of Nanoscience and Technology, 2010, 1–30. https://doi.org/10.1093/oxfordhb/9780199533053.013.1
T. Wang, N. Zhao, C. Shi, L. Ma, F. He, C. He, J. Li, & E. Liu “Interface and Doping Effects on Li Ion Storage Behavior of Graphene/Li2O”, The Journal of Physical Chemistry C 121 (2017) 19559. https://doi.org/10.1021/acs.jpcc.7b04642.
P. Rani & V. K. Jindal, “Designing band gap of graphene by B and N dopant atoms”, RSC Advances 3 (2013) 802. https://doi.org/10.1039/c2ra22664b
K. Zhao, W. Zhang5, L. Peng, M. Jiang, W. Wang, X. He, Y. Wang & L. Gao “First-principle study on electronic and optical properties of (Al, P, Al-P) doped graphene”, Material Research Express 7 (2020) 105013. https://doi.org/10.1088/2053-1591/abc125.
T. Ando, “The electronic properties of graphene and carbon nantubes”, Npg Asia Materials 1 (2009) 17. https://www.nature.com/articles/am200923.
B. Y. Wang , H. Wang , L. Y. Chen , H. C. Hsueh , X. Li, J. Guo , Y. Luo , J. W. Chiou, W. H. Wang , P.H Wang , K. H. Chen , Y. C. Chen, L. C. Chen, C. H. Chen, J. Wang & W. F. Pong “Nonlinear bandgap opening behavior of BN co-doped graphene”, Carbon 107 (2016) 857. https://doi.org/10.1016/J.CARBON.2016.06.091.
S. Mukherjee & T. P. Kaloni, “Electronic properties of boron and nitrogen-doped graphene: A first principles study”, Journal of Nanoparticle Research 14 (2012) 1059. https://doi.org/10.1007/s11051-012-1059-2.
B. Bhattacharya & U. Sarkar, “The Effect of Boron and Nitrogen Doping in Electronic, Magnetic, and Optical Properties of Graphyne”, The Jour nal of Physical Chemistry C 120 (2016) 26793. https://doi.org/10.1021/acs.jpcc.6b07478.
S. Ullah, P. A. Denis, & F. Sato, “Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: A DFT study”, Applied Material Today 9 (2017) 333. https://doi.org/10.1016/J.APMT.2017.08.013.
X. S. Dai, T. Shen, & H. C. Liu, “DFT study on electronic and optical properties of graphene modified by phosphorus”, Material Research Ex press 6 (2019) 085635. https://doi.org/10.1088/2053-1591/ab29bc.
M. L. Ould NE, A. G. el hachimi, M. Boujnah, A. Benyoussef, & A. el Kenz, “Comparative study of electronic and optical properties of graphene and germanene: DFT study”, Optik (Stuttg) 158 (2018) 693. https://doi.org/10.1016/j.ijleo.2017.12.089
Z. M. Wang, , A. Woag & G. Salamo, Lecture notes in nanoscale science and technology, Springer book series, 2023. https://www.springer.com/series/7544
H. Ahmad, J. Lindemuth, Z. Engel, C. M. Matthews, T. M. McCrone, & W. A. Doolittle, “Substantial P-Type Conductivity of AlN Achieved via Beryllium Doping”, Advanced Materials 33 (2021) 2104497. https://doi.org/10.1002/adma.202104497
A. C. F. Serraon, J. A. D. Del Rosario, P. Y. A. Chuang, M. N. Chong, Y. Morikawa, A. A. B. Padama & J. D. Ocon, “Alkaline earth atom doping induced changes in the electronic and magnetic properties of graphene: a density functional theory study”, RSC Advices 11 (2021) 6268. https://doi.org/10.1039/D0RA08115A.
X. Y. Liang, N. Ding, S. P. Ng, & C. M. L. Wu, “Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study”, Applied Surfuce Science, 411 (2017) 11. https://doi.org/10.1016/J.APSUSC.2017.03.178
V. v. Chaban & O. v. Prezhdo, “Boron doping of graphene-pushing the limit”, Nanoscale 8 (2016) 15521. https://doi.org/10.1039/c6nr05309b
A. A. Adewale, A. Chik, O. K. Yusuff, S. A. Ayinde, & Y. K. Sanusi, “First principle calculation of structural, electronic and optical proper ties of CdS and doped Cdx-1AxS (A=Co, Fe, Ni) compounds”, Mate rial Today Commununication 26 (2021) 101882. https://doi.org/10.1016/j.mtcomm.2020.101882.
A. Omidvar, “Electronic structure tuning and band gap opening of nitro gen and boron doped holey graphene flake: The role of single/dual doping”, Material Chemistry Physic 202 (2017) 258. https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.025.
F. Lopez-Ur ´ ´ıas, M. Terrones, & H. Terrones, “Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes”, Carbon 84 (2015) 317. https://doi.org/10.1016/J.CARBON.2014.11.053.
O. Olaniyan, E. Igumbor, A. A. Khaleed, A. A. Mirghni, and N. Manyala, “Ab-initio study of the optical properties of beryllium-sulphur co-doped graphene”, AIP Advances 9 (2019) 025221. https://doi.org/10.1063/1.5060708.
X. He, Z.-X. Chen, & Z. Li, “Communication: Emergence of localized magnetic moment at adsorbed beryllium dimer on graphene”, Journal of Chemical Physics 133 (2010) 231104. https://doi.org/10.1063/1.3524830.
N. Dhar & D. Jana, “Effect of beryllium doping and vacancy in band structure, magnetic and optical properties of free standing germanene”, Current Applied Physics 17 (2017) 1589. https://doi.org/10.1016/j.cap.2017.08.022
H. Ferjani, Y. ben Smida, D. C. Onwudiwe, N. Y. Elamin, S. Ezzine, & N. S. Almotlaq, “An Experimental and Theoretical Study of the Optical Properties of (C 2 H 7 N 4 O) 2 BiCl 5 for an Optoelectronic Application”, Inorganics 10 (2022) 48. https://doi.org/10.3390/inorganics10040048
M. Junaid Iqbal Khan, Zarfishan Kanwal, Masood Yousaf, Azeem Nabi, Javed Ahmad, Abid Latif, & Hamid Ullah “Investigating structural, electronic and optical properties of CdS:Cr (A GGA and GGA+U study”, Solid State Sciences 108 (2020) 106437. https://doi.org/10.1016/j.solidstatesciences.2020.106437.
O. V. Sedelnikova, L. G. Bulusheva, & A. V. Okotrub, “Ab initio study of dielectric response of rippled graphene”, Journal of Chemical Physics 134 (2011) 24. https://doi.org/10.1063/1.3604818
X. Dai, T. Shen, Y. Feng, B. Yang, & H. Liu, “DFT investigations on photoelectric properties of graphene modified by metal atoms”, Ferroelectrics 568 (2020) 143. https://doi.org/10.1080/00150193.2020.1811038
R. Santosh & V. Kumar, Optical properties of hydrogenated graphene using first-principle calculations, 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, India, (2018) 1-3. https://doi.org/10.1109/UPCON.2018.8596939
X. S. Dai, T. Shen, Y. Feng, & H. C. Liu, “Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study”, Physica B Condens Matter 574 (2019) 411660. https://doi.org/10.1016/j. physb.2019.411660
P. Rani, G. S. Dubey, & V. K. Jindal, “DFT study of optical proper ties of pure and doped graphene”, Physica E: Low-dimensional Systems and Nanostructures 62 (2014) 28. https://doi.org/10.1016/j.physe.2014.04.010
S. Hussain, , G. Murtaza, S. H. Khan, A. Khan, M. A. Ali, M. Faizan, A. Mahmood & R. Khenata, “First principles study of structural, optoelectronic and thermoelectric properties of Cu2CdSnX4 (X = S, Se, Te) chalcogenides”, Material Research Bulletin 79 (2016) 73. https://doi.org/10.1016/j.materresbull.2016.03.001.
S. Hussain, L. Guo, H. Louis, S. Zhu, & T. He, “First-principles calculations of wurtzite ZnS1-xSex solid solutions for photocatalysis”, Material Today Communication 21(2019) 100672. https://doi.org/10.1016/j.mtcomm.2019.100672
M. J. Iqbal Khan & Z. Kanwal, “Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study)”, Optik 193 (2019) 16298. https://doi.org/10.1016/j.ijleo. 2019.162985
M. A. Lahiji & A. A. Ziabari, “First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers”, Physica B: Condensed Matter 501 146. https://doi.org/10.1016/j.physb.2016.08.033
O. Olaniyan, E. Igumbor, A. A. Khaleed, A. A. Mirghni, & N. Manyala, “Ab-initio study of the optical properties of beryllium-sulphur co-doped graphene, AIP Advances 9 (2019) 025221. https://doi.org/10.1063/1.5060708.
P. Rani, G. S. Dubey, & V. K. Jindal, “DFT study of optical properties of pure and doped graphene”, Physica E: Low-dimensional systems and nanostructures 62 (2014) 28. https://doi.org/10.1016/J.PHYSE.2014.04.010
R. F. Egerton, “Electron energy-loss spectroscopy in the TEM”, Reports on Progress in Physics 72 ( 2009) 016502. https://doi.org/10.1088/0034-4885/72/1/016502.
T. Stauber & G. Gomez-Santos, “Plasmons in layered structures including ´graphene”, New Journal of Physics 14 (2012) 105018. https://doi.org/10.1088/1367-2630/14/10/105018.
T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, & P. R. Briddon “Plasmon spectroscopy offree-standing graphene films”, Physical Review B: Condensed Matter and Materials Physics 77 2008. https://doi.org/10.1103/PhysRevB.77.233406
P. Nath, S. Chowdhury, D. Sanyal, & D. Jana, “Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet”, Carbon 73 (2014) 275. https://doi.org/10.1016/j.carbon.2014.02.064.
M. A. Lahiji & A. A. Ziabari, “First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers”, Physica B: Condensed Matter 501 (2016) 146. https://doi.org/10.1016/j.physb.2016.08.033.
Published
How to Cite
Issue
Section
Copyright (c) 2024 L. O. Agbolade, A. K. Y. Dafhalla, D. M. I. Zayan, T. Adam, A. Chik, A. A. Adewale, S. C. B. Gopinath, U. Hashim
This work is licensed under a Creative Commons Attribution 4.0 International License.