Evaluating the health risks of radionuclides in welding and fabrication workshops in Akwa Ibom State, Southern Nigeria

Authors

  • Emmanuel G. Ndoma Department of Physics, Akwa Ibom State University, Mkpat Enin, Nigeria https://orcid.org/0000-0003-3620-8615
  • Nyakno J. George Department of Physics, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria
  • Aniekan M. Ekanem Department of Physics, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria
  • Muyiwa M. Orosun Department of Physics, University of Ilorin, Ilorin, Nigeria
  • Patrick O. Ushie Department of Physics, University of Cross River State, Calabar, Nigeria
  • Emmanuel P. Agbo Department of Physics, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria https://orcid.org/0000-0002-0215-2492
  • Benson E. Eze Department of Physics, University of Cross River State, Calabar, Nigeria
  • Charles C. Mbonu Department of Physics, Federal University of Petroleum Resources Effurun
  • Kolawole E. Adesina School of Health Sciences, Purdue University, West‑Lafayette, IN 47906, USA
  • Blessed Yahweh The MindBook Group, Topfaith University, Akwa Ibom State, Nigeria
  • Francis E. Okon Department of Physics, Akwa Ibom State University, Ikot Akpaden, Akwa Ibom State, Nigeria

Keywords:

Environmental radioactivity, Ionising radiation, Exposure assessment, Nigeria

Abstract

Welders undoubtedly experience significant health issues. The question arises: could ionising radiation from radioactivity be responsible for these health problems, rather than solely attributing them to welding fumes and non-ionizing radiation? This study investigated the activity of primordial radionuclides, including 40K , 238U, and 232Th, and examined the health impacts of exposure to these elements within welding and fabrication environments. Using a gamma spectrometric system consisting of NaI(Tl) detector, the study revealed significant variations in radioactivity levels such as; 40K ranged from 158.79 to 552.53 Bqkg-1, with an average value of 336.22 Bqkg-1; 238U ranged from 8.23 to 55.22 Bqkg-1, with an average value of 27.85 Bqkg-1, and 232Th from 17.63 to 72.17 Bqkg-1, with an average value of 37.97 Bqkg-1. The trend in these variations correlated with the age and work frequency of welding sites. Although, the geology of the area should be considered in future research. In several locations, activity concentrations exceeded the international safe limit. Radiological parameters showed the following ranges: Radium equivalent from 49.03 to 193.69 Bqkg-1, External Hazard from 0.13 to 0.52 Bqkg-1, Absorbed Dose from 22.89 to 188.79 nGyh-1, Annual Effective Dose from 0.03 to 0.11 mSvy-1, Annual Gonadal Equivalent Dose from 0.16 to 0.62 mSvy-1, and Excess Lifetime Cancer Risk from 0.10 to 0.38 mSvy-1. These figures further indicate that radiation levels at some welding sites exceed the world average. Therefore, further research is needed to identify other affected sites.

Dimensions

[1] E. Ndoma, N. George, E. Nathaniel, M. Orosun, E. Agbo & G. Offorson, “Technological Civilization and Health Impact Assessment of Non-Ionizing Radiation in Nigeria: Review”, Polytechnica 7 (2024) 3. https://doi.org/10.1007/s41050-023-00045-9.

[2] J. M. Antonini, “Health Effects of Welding”, Critical Reviews in Toxicology 33 (2003) 61. https://doi.org/10.1080/713611032.

[3] A. S. Kanmi, U. Ibrahim, N. G. Goki, U. Rilwan, M. I. Sayyed, T. Y. Wais, B. F. Namq & L. A. Najam, “Estimation of soil-to-plant transfer factor across six local government areas of Kwara State, Nigeria”, Journal of Environmental Radioactivity 280 (2024) 107548. https://doi.org/10.1016/j.jenvrad.2024.107548.

[4] E. P. Agbo, E. B. Ettah, C. O. Edet & E. G. Ndoma, “Characteristics of various radiative fluxes: global, tilted, direct, and diffused radiation— a case study of Nigeria”, Meteorol Atmos Phys 135 (2023) 14. https://doi.org/10.1007/s00703-023-00951-8.

[5] U. Barnekow, S. Fesenko, V. Kashparov, G. Kis-Benedek, G. Matisoff, Y. Onda, N. Sanzharova, S. Tarjan, A. Tyler & B. Varg, “Guidelines on Soil and Vegetation Sampling for Radiological Monitoring”, IAEA 486 (2019) 51. https://www.iaea.org/publications/12219/guidelines-on-soil-and-vegetation-sampling-for-radiological-monitoring.

[6] UNSCEAR, “Sources and Effects of Ionizing Radiation”, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1 (2010) 471. https://doi.org/10.18356/cb7b6e26-en.

[7] J. K. Nduka, T. C. Umeh, H. I. Kelle, P. C. Ozoagu & P. C. Okafor, “Health risk assessment of radiation dose of background radionuclides in quarry soil and uptake by plants in Ezillo-Ishiagu in Ebonyi SouthEastern Nigeria”, Case Studies in Chemical and Environmental Engineering 6 (2022) 100269. https://doi.org/10.1016/j.cscee.2022.100269.

[8] M. M. Orosun, M. R. Usikalu, K. J. Oyewumi & T. A. Adagunodo, “Natural radionuclides and radiological risk assessment of granite mining field in Asa, North-central Nigeria”, MethodsX 6 (2019) 2504. https://doi.org/10.1016/j.mex.2019.10.032.

[9] S. Sivakumar, A. Chandrasekaran, R. Ravisankar, S. M. Ravikumar, P. J. Prince Prakash Jebakumar, P. Vijayagopal, I. Vijayalakshmi & M. T. Jose, “Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach”, Journal of Taibah University for Science 8 (2014) 375. https://doi.org/10.1016/j.jtusci.2014.03.004.

[10] S. Siddeeg, M. Suliman, F. Ben Rebah, W. Mnif, A. Ahmed & I. Salih, “Comparative Study of Natural Radioactivity and Radiological Hazard Parameters of Various Imported Tiles Used for Decoration in Sudan”, Symmetry 10 (2018) 746. https://doi.org/10.3390/sym10120746.

[11] UNSCEAR, “Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)”, United Nations, New York, USA, 2000, pp. 1–659. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf.

[12] E. S. Joel, O. Maxwell, O. O. Adewoyin, C. O. Ehi-Eromosele, Z. Embong & M. A. Saeed, “Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria”, Radiation Physics and Chemistry 144 (2018) 7. https://doi.org/10.1016/j.radphyschem.2017.11.003.

[13] A. Chandrasekaran, R. Ravisankar, G. Senthilkumar, K. Thillaivelavan, B. Dhinakaran, P. Vijayagopal, S. N. Bramha, B. Venkatraman, “Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India”, Egyptian Journal of Basic and Applied Sciences 1 (2014) 38. https://doi.org/10.1016/j.ejbas.2014.02.001.

[14] K. Rozanski, K. Froehlich, “Radioactivity and Earth Sciences: Understanding the Natural Environment”, IAEA Bulletin 38 (1996) 9. https://www.iaea.org/publications/magazines/bulletin/38-2/radioactivity-and-earth-sciences-understanding-natural-environment.

[15] O. Isinkaye, N. Jibiri & A. Olomide, “Radiological health assessment of natural radioactivity in the vicinity of Obajana Cement Factory, North Central Nigeria”, Journal of Medical Physics 40 (2015) 52. https://doi.org/10.4103/0971-6203.152256.

[16] A. S. Kanmi, U. Ibrahim, N. G. Goki, U. Rilwan, M. I. Sayyed, Y. Maghrbi, B. F. Namq, L. A. Najam & T. Y. Wais, “Assessment of natural radioactivity and its radiological risks in the soil of local government areas (Asa, Ilorin East, Ilorin South, Irepodun, Moro, and Oyun) in Kwara State, Nigeria”, Case Studies in Chemical and Environmental Engineering 11 (2025) 101040. https://doi.org/10.1016/j.cscee.2024.101040.

[17] G. M. Shilpa, B. N. Anandaram & T. L. Mohankumari, “Measurement of activity concentration of primordial radionuclides in soil samples from Thirthahalli taluk and the assessment of resulting radiation dose”, Journal of Radioanalytical and Nuclear Chemistry 316 (2018) 11. https://doi.org/10.1007/s10967-018-5788-2.

[18] D. Roy, M. M. Siraz, MdJ Dewan, S. Pervin, A. F. M. M. Rahman, M. U. Khandaker & S. Yeasmin, “Assessment of terrestrial radionuclides in the sandy soil from Guliakhali beach area of Chattogram, Bangladesh”, Journal of Radioanalytical and Nuclear Chemistry 331 (2022) 307. https://doi.org/10.1007/s10967-022-08196-2.

[19] A. E. Akpan, E. D. Ebong, S. E. Ekwok & J. O. Eyo, “Assessment of radionuclide distribution and associated radiological hazards for soils and beach sediments of Akwa Ibom Coastline, southern Nigeria”, Arab Journal of Geosciences 13 (2020) 753. https://doi.org/10.1007/s12517-020-05727-7.

[20] A. Essiett, I. Essien & M. Bede, “Measurement of surface dose rate of nuclear radiation in coastal areas of Akwa Ibom State, Nigeria”, International Journal of Physics 3 (2015) 224. https://doi.org/10.12691/ijp-3-5-5.

[21] M. Ibrahim, M. Adrees, U. Rashid, S. H. Raza & F. Abbas, “Phytoremediation of Radioactive Contaminated Soils,” in Soil Remediation and Plants, Elsevier, 2015, pp. 599–627. https://doi.org/10.1016/B978-0-12-799937-1.00021-8.

[22] O. M. Isinkaye, S. Adeleke & D. A. Isah, “Background radiation measurement and the assessment of radiological impacts due to natural radioactivity around Itakpe Iron-Ore Mines”, MAPAN 33 (2018) 271. https://doi.org/10.1007/s12647-018-0261-9.

[23] A. V. Voronina, V. S. Semenishchev, M. O. Blinova & P. J. Sanin, “Methods for Decrease of Radionuclides Transfer from Soil to Agricultural Vegetation”, in Radionuclides in the Environment, C. Walther & D. K. Gupta (Eds.), Springer International Publishing, Cham, 2015, pp. 185– 207. https://doi.org/10.1007/978-3-319-22171-7_11.

[24] M. M. Orosun, K. J. Oyewumi, M. R. Usikalu & C. A. Onumejor, “Dataset on radioactivity measurement of Beryllium mining field in Ifelodun and gold mining field in Moro, Kwara State, North-central Nigeria”, Data in Brief 31 (2020) 105888. https://doi.org/10.1016/j.dib.2020.105888.

Published

2025-08-01

How to Cite

Evaluating the health risks of radionuclides in welding and fabrication workshops in Akwa Ibom State, Southern Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2550. https://doi.org/10.46481/jnsps.2025.2550

Issue

Section

Physics & Astronomy

How to Cite

Evaluating the health risks of radionuclides in welding and fabrication workshops in Akwa Ibom State, Southern Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2550. https://doi.org/10.46481/jnsps.2025.2550