Computational investigation of magnetohydrodynamics Casson Micropolar fluid flowing past a permeable linearly stretchy wall with heat source

Authors

  • S. Alao Department of Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso. Nigeria.
  • R. A. Oderinu Department of Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso. Nigeria.
  • B. A. Sanusi Department of Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso. Nigeria.
  • T. A. Oyeyinka Department of Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso. Nigeria.
  • F. J. Ayanbukola Department of Mathematics, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso. Nigeria.

Keywords:

Casson fluid, Porosity, Joule heating, Heating transfer, Hermite Collocation

Abstract

In this study, a computational investigation that analyze the behavior of Magnetohydrodynamic (MHD) micropolar Casson fluid flowing via a linearly stretchy wall, considering the effects of heat source in a permeable medium. To achieve this, a similarity transformation is adopted, to convert the fundamental partial differential equations into nonlinear ordinary differential equations which are then solved numerically using collocating weighted residual scheme that adopts Hermite polynomials as the basis functions and Gauss-Lobatto points for spatial discretization. To affirm the accuracy of the simulation, the outputs are validated using 4th order Runge-Kutta method via shooting technique serving as the control method with the aid of Mathematical software (Maple 18.0). This approach enables the numerical solutions for the velocity \bar{f}^{\prime}; temperature \bar{\theta}, and microstructure \bar{g} of the fluid. The results are then presented in tabular and graphical forms, allowing for a detailed assessment of the impact of various parameters on the fluid's behavior. It is deduced that, increased porosity enhances thermal dispersion, reduces thermal resistance, and promotes heat transfer. Also, as magnetic field (M) increases, the temperature profile exhibits significant enhancement, primarily as a result of viscous heating, resulting in improved temperature at the wall. As the viscous dissipation activity enhances, the heat profile also improves as a result of steady growth in the heat boundary layer. Through the comprehensive analysis of the graphical results, the relationship between these parameters and the fluid's behavior were properly observed, shedding light on the underlying physical mechanisms. This study establishes the influence of fluid mobility and Eckert number on thermal profiles, providing critical implications for industrial heat transfer optimization and fluid flow management and contributing to a depth understanding of the complex dynamics of MHD Casson fluid flow in porous media with potential applications in different fields of engineering and physics.

Dimensions

[1] A. J. Benazir, R. Sivaraj & O.D. Makinde, “Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink”, Int. J. Eng. Res. Afr. 21 (2016) 6983. https://doi.org/10.4028/www.scientific.net/JERA.21.69.

[2] S. Shaw, G. Mahanta & P. Sibanda, “Non-linear thermal convection in a Casson fluid flow over a horizontal plate with convective boundary condition”, Alex. Eng. J. 55 (2016) 1295. https://doi.org/10.1016/j.aej.2016.04.020.

[3] M.G. Sobamowo, “Combined effects of thermal radiation and nanoparticles on free convection flow and heat transfer of casson fluid over a vertical plate”, Int. J. Chem. Eng. (2018) 7305973. http://dx.doi.org/10.1155/2018/7305973.

[4] T.Hayat, M.B. Ashraf, S.A. Shehzad & A. Alsaedi, “Mixed convection flow of Casson nanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink”, J. Appl. Fluid Mech. 8 (2015) 803. https://doi.org/10.1088/0256-307X/29/11/114704.

[5] S.Haldar, S. Mukhopadhyay & G.C. Layek, “Dual solutions of Casson fluid flows over a power law stretching sheet”, J. Appl. Mech.Tech. Phys. 58 (2017) 629. https://doi.org/10.1134/S002189441704006X.

[6] M. Mustafa & J.A. Khan, “Model for flow of casson nanofluid past a non-linearly stretching sheet considering magnetic field effects”, AIP Adv. 5 (2015) 077148. http://dx.doi.org/10.1063/1.4927449.

[7] S. Sarkar & M.F. Endalew, “Effects of melting process on the hydromagnetic wedge flow of a casson nanofluid in a porous medium”, Boundary Value Problems (2019) 114. https://dx.doi.org/10.1186/s13661-019-1157-5.

[8] N. Ibrar, M.G. Reddy, S.A. Shehzad, P. Sreenivasulu & T. Poornima, “Interaction of single and multi walls carbon nanotubes in magnetized-nano casson fluid over radiated horizontal needle”, SN Applied Sciences 2 (2020) 112. https://link.springer.com/article/10.1007/s42452-0202523-8.

[9] P.L. Sharma, D. Bains & P. Thakur, “Thermal instability of rotating Jeffrey nanofluids in porous media with vari able gravity” , Journal of the Nigerian Society of Physical Sciences, (2023) 1366. http://dx.doi.org/10.46481/jnsps.2023.1366.

[10] A.K. Kumar, P. Lata, P.L. Sharma, D.B. Bains & P.T. Thakur “Effect of magnetic field on the onset of thermal convection in a Jeffery nanofluid layer saturated by a porous medium: free free, rigid-rigid and rigid-free boundary conditions”, Journal of the Nigerian Society of Physical Sciences, (2024) 1934. https://doi.org/10.46481/jnsps.2024.1934.

[11] G. Rana & V. Sharma, “Hydromag netic thermosolutal instability of com pressible walters’ (model B’) rotating fluid permeated with suspended particles in porous medium”, The International Journal of Multiphysics, 5 (2011) 325. https://doi.org/10.1260/1750-9548.5.4.325.

[12] A.D. Ohaegbue, S.O. Salawu, R.A. Oderinu, A.A. Oyewumi & A.O. Akindele, “Analysis of electromagnetic and radiative heat source on tangential hyperbolic fluid under Arrhenios Kinetic with convective cooling”, International Journal of thermofluids 23 (2024) 100761. https://doi.org/10.1016/j.ijft.2024.100761.

[13] M.D. Shamshuddin, S.O. Salawu, K. Ramesh, V.S. Patil & P. Humane, “Bioconvective treatment for the reactive casson hybrid nanofluid flow past an exponentially stretching sheet with ohmic heating and mixed convection”, J Therm Anal Calorim 148 (2023) 1208395. http://dx.doi.org/10.1007/s10973-023-12465-x.

[14] S.A. Lone, M.D. Shamshuddin, S. Shahab, S. Iftikhar, A. Saeed & A.M. Galal, “Computational analysis of MHD driven bioconvective flow of hybrid casson nanofluid past a permeable exponential stretching sheet with thermophoresis and brownian motion effects”, J Magn Mater (2023) 170959. https://doi.org/10.1016/j.jmmm.2023.170959.

[15] M.D. Shamshuddin, R.P. Sharma, A. Ghaffari, & S.R. Allipudi, “Induced magnetic transportation of soret and dissipative effects on casson fluid flow towards a vertical plate with thermal and species flux conditions”, Int J Mod Phys B (2023) 2450157. https://doi.org/10.1142/S0217979224501571.

[16] R. Ellahi, S.Z. Alamri & A. Basit, “Effects of MHD and slip on heat transfer boundary-layer flow over a moving plate based on specific entropy generation”, J Taibah Univ Sci 12 (2018) 476482. https://doi.org/10.1080/16583655.2018.1483795.

[17] M.M. Mousa, M.R. Ali & W.X. Ma, “A combined method for simulating MHD convection in square cavities through localized heating by method of line and penalty-artificial compressibility”, J Taibah Univ Sci, 15 (2021) 208. https://doi.org/10.1080/16583655.2021.1951503.

[18] K. Maqbool, N. Manzoor & R.S. Ellahi, “Influence of heat transfer on MHD carreau fluid flow due to motile cilia in a channel”, J Therm Anal Calorim 144 (2021) 2317. http://dx.doi.org/10.1007/s10973-020-10476-6.

[19] F. Selimefendigil & A.J. Chamkha, “MHD mixed convection of AgMgO/water nanofluid in a triangular shape partitioned liddriven square cavity involving a porous compound”, J Therm Anal Calorim 143 (2021) 1467. http://dx.doi.org//10.1007/s10973-020-09472-7.

[20] H. Ouri, F. Selimefendigil & M. Bouterra, “MHD hybrid nanofluid convection and phase change process in an L-shaped vented cavity equipped with an inner rotating cylinder and PCM-packed bed system”, Alex Eng J. 63 (2023) 563. https://doi.org/10.1016/j.aej.2022.08.016.

[21] F. Selimefendigil, H. Chouikhi & H.F. Oztop, “Natural convection and entropy generation of hybrid nanofluid in double annulus separated by a thin rotating partition under magnetic field”, J Magn Mater 582 (2023) 170974. https://doi.org/10.1016/j.jmmm.2023.170974.

[22] H. Branover & Y. Unger, “Metallurgical technologies, energy conversion, and magnetohydrodynamic flows”, American Institute of Aeronautics and Astronautics 1993 pp. 32-49 https://doi.org/10.2514/5.9781600866210.0032.0049.

[23] S. Asai, “Magnetohydrodynamics in materials processing”, Springer pp. 49-86 2012 https://doi.org/10.1007/978-94-007-2645-1_3.

[24] M. Guelman & N. Smirnov, “Magnetohydrodynamic thruster for spacecraft”, Prog Aerosp Sci 83 (2016) 60. https://doi.org/10.1080/16583655.2023.2271691.

[25] S. Kumar, A.J. Chamkha & A.M. Rashad, “Hall current effects on MHD flow in a channel with porous walls”, Results Phys 21 (2021) 103781. https://doi.org/10.1016/j.ijft.2020.100061.

[26] V. Bojarevics, K. Pericleous & V. Galindo, “Modelling of MHD flow in a liquid metal battery”, J Energy Storage 30 (2020) 101499. https://doi.org/10.1080/16583655.2023.2271691.

[27] R. Kataria, R.H. Hari & Patel, “Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium”, Alexandria Engineering Journal 55 (2016) 583. http://dx.doi.org/10.1016/j.aej.2016.01.019.

[28] D. Maran, A. Selvaraj, M. Usha & S. Dilipjose, “First order chemical response impact of MHD flow past an infinite vertical plate with in the sight of exponentially with variable mass diffusion and thermal radiation”, Materials Today: Proceedings 46 (2021) 3302. https://doi.org/10.1016/j.matpr.2020.11.464.

[29] S. Baag, S.R. Mishra, G.C. Dash & M.R. Acharya, “Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction”, Journal of King Saud University- Engineering Sciences 29 (2017) 75. https://doi.org/10.1016/j.jksues.2014.06.002.

[30] S.M. Hussain, B.S. Goud, P. Madheshwaran, W. Jamshed, A. A. Pasha, R. Safdar, M. Arshad, R. W. Ibrahim & M. K. Ahmad, “Effectiveness of nonuniform heat generation (sink) and thermal characterization of a Carreau fluid flowing across a nonlinear elongating cylinder: A numerical study”, ACS Omega 7 (2022) 25309. https://doi.org/10.1021/acsomega.2c02207.

[31] A. Mishra, A. K. Pandey, A. J. Chamkha & M. Kumar, “Roles of nanoparticles and heat generation/absorption on MHD flow of Ag-H2O nanofluid via porous stretching/shrinking convergent/divergent channel”, Journal of the Egyptian Mathematical Society 28 (2020) 17. https://doi.org/10.1186/s42787-020-00079-3.

[32] S. Alao, R. A. Oderinu, E. I. Akinola & O. E. Opaleye, “An alternative method for investigating the effect of squeezing flow of a Casson fluid between parallel walls on magnetic field”, Journal of Mathematical and Computational Science 12 (2022) 55. https://doi.org/10.28919/jmcs/6942.

[33] D. Gopal, S. H. S. Naik, N. Kishan & C. S. K. Raju, “The impact of thermal stratification and heat generation/absorption on MHD carreau nano fluid flow over a permeable cylinder”, SN Applied Sciences. 2 (2020) 639. http://dx.doi.org/10.1007/s42452-020-2445-5.

[34] T. Islam, Md. N. Alam, S. Niazai, I. Khan, Md. FayzAlAsad & S. Alqahtani, “Heat generation/absorption effect on natural convective heat transfer in a wavy triangular cavity filled with nanofluid”, Scientific Reports 13 (2023) 21171. https://doi.org/10.1038/s41598-023-48704-2.

[35] P. L. Sharma, G.C.Rana & D.Bains, “On Thermal convention in rotating casson nanofluid permeated with suspended particles in a Darcy-Brinkman porous Media” 27 pp. 73-96. https://doi.org/10.1615/Jpormedia.2024052821.

[36] N. H. Hamad, M. Bilal, A. Ali, S. M. Eldin, M. Sharaf & M. Ur Rahman, “Energy transfer through third grade fluid flow across an inclined stretching sheet subject to thermal radiation and Lorentz force”, Scientific Reports 13 (2023) 19643. https://doi.org/10.28919/jmcs/6942.

[37] S. O. Salawu & E.O. Fatunmbi, “Dissipative heat transfer of micropolar hydromagnetic variable electric conductivity fluid past inclined plate with Joule heating and non-uniform heat generation”, Asian J. Phys. Chem. Sci. 2 (2017) 110. https://doi.org/10.9734/AJOPACS/2017/31889.

[38] A. M. Obalalu, O. A. Ajala, A. O. Akindele, S. Alao & A. Okunloye, “Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy”, The European Physical Journal Plus 136 (2021) 891. https://doi.org/10.1140/epjp/s13360-021-01869-z.

[39] S. Masood, M. Farooq & A. Anjum, “Influence of heat generation/absorption and stagnation point on polystyreneTiO2/H2O hybrid nanofluid flow”, Scientific Reports 11 (2021) 22381. https://doi.org/10.1038/s41598-021-01747-9.

[40] S. Alao, S.O. Salawu, R.A. Oderinu, A.A. Oyewumi & E.I. Akinola, “Investigation of thermal radiation and viscous heating effects on the hydromagnetic reacting micropolar fluid species flowing past a stretchy plate in permeable media”, International Journal of Thermofluids (2024) 100600. https://doi.org/10.1016/j.ijft.2024.100600.

[41] S.O. Salawu & A.M. Okedoye, “Thermodynamic second law analysis of hydromagnetic gravity-driven two-step exothermic chemical reactive flow with heat absorption along a channel”, Iran. J. Energy Environ 9 (2018) 114120. http://dx.doi.org/10.5829/ijee.2018.09.02.06.

[42] S. Rosseland, Astrophysik, Auf atomtheoretischer grundlage (1931). http://dx.doi.org/10.1007/978-3-662-26679-3.

[43] M.T. Akolade, T.A. Adeosun & O.J. Olabode, “Influence of thermo-physical features on MHD squeezed flow of dissipative Casson fluid with chemical and radiative effects”, Journal of applied and computational mechanics, 7 (2021) 1999. http://dx.doi.org/10.22055/JACM.2020.34909.2508.

[44] P. Kumar, B. Singh, S. Goyal, K. Kumar, A. Nandan, K.S. Nisar, S. Alkhazaleh & Abdel-Aty, “Numerical solution of MHD Micropolar Casson fluid flow over porous linearly stretching sheet with heat source/sink”, Journal of Applied Mathematics and Information Sciences. 18 (2024) 183. http://dx.doi.org/10.18576/amis/180118.

Schematic diagram of the flow

Published

2025-08-01

How to Cite

Computational investigation of magnetohydrodynamics Casson Micropolar fluid flowing past a permeable linearly stretchy wall with heat source. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2577. https://doi.org/10.46481/jnsps.2025.2577

Issue

Section

Mathematics & Statistics

How to Cite

Computational investigation of magnetohydrodynamics Casson Micropolar fluid flowing past a permeable linearly stretchy wall with heat source. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2577. https://doi.org/10.46481/jnsps.2025.2577