Analysis of industrial solid waste for secure and eco-friendly disposal by incineration practices

Authors

  • Chinnarao Menda Sr.Manager- EHS, Raks Pharma private limited, JNPC, Parawada, Anakapalli District, PIN -- 531019
  • Ch. Ramakrishna Department of Environmental Sciences, GITAM University, Visakhapatnam, Andhra Pradesh, INDIA -- 45
  • V D N Kumar Abbaraju Department of Chemistry, GITAM University, Visakhapatnam, Andhra Pradesh, INDIA - 45

Keywords:

Incineration, Heavy metals, Industrial waste, Calorific value, Bulk density

Abstract

Solid waste management poses significant environmental challenges worldwide, particularly in developing nations like India, where unscientific disposal of industrial solid waste (ISW) leads to severe environmental and health concerns. With the increasing demand for energy, there is a growing emphasis on developing alternative fuels and optimizing waste management systems across all production stages. Among various methods, incineration has emerged as a sustainable alternative to landfilling, addressing issues such as soil, groundwater, and air pollution while generating energy. This study investigates 21 industrial waste samples from Visakhapatnam to evaluate their physical and chemical properties for secure and eco-friendly incineration. Key parameters analyzed include bulk density, pH, calorific value, and heavy metal concentrations. Bulk density values ranged from 0.23 to 1.48 g/cc, and pH levels varied from highly acidic (1.36) to slightly alkaline (11.74), with some falling outside the prescribed range of 4--12 for incinerable waste. Calorific values revealed substantial variation, with some exceeding the limit of 2500 Cal/gm, highlighting their potential for energy recovery. Heavy metal analysis demonstrated compliance with regulatory limits for most samples. Total zinc, copper, and chromium concentrations were within acceptable ranges, while cadmium concentrations (up to 8.5 mg/kg in certain samples) necessitate closer monitoring to mitigate potential environmental risks. Nickel concentrations were below the detection limit of 7.0 mg/kg, and lead levels remained well within permissible limits. The findings indicate that most waste samples are deemed suitable for incineration, posing minimal leaching risks. This study provides critical insights into optimizing waste-to-energy processes and reactor design, contributing to sustainable waste management practices and energy recovery solutions.

Dimensions

[1] A. H. Kanhar, S. Chen & F. Wang, “Incineration fly ash and its treatment to possible utilization: A review”, Energies 13 (2020) 6681. https://doi.org/10.3390/en13246681.

[2] Y. Seo, “Current MSW management and waste-to-energy status in the Republic of Korea”, Columbia University, New York, USA, 2013, pp. 49– 58. https://wtert.org/wp-content/uploads/2020/10/YS-Thesis_final_Nov3.pdf.

[3] A. L. Fabricius, M. Renner, M. Voss, M. Funk, A. Perfoll, F. Gehring & L. Duester, “Municipal waste incineration fly ashes: from a multi-element approach to market potential evaluation”, Environmental Sciences Europe 32 (2020) 88. https://doi.org/10.1186/s12302-020-00365-y.

[4] J. Hirvonen & R. Kosonen, “Waste incineration heat and seasonal thermal energy storage for promoting economically optimal net-zero energy districts in Finland”, Buildings 10 (2020) 205. https://doi.org/10.3390/buildings10110205.

[5] S. Kaza, L. Yao, P. Bhada-Tata & F. Van Woerden, “What a waste 2.0: a global snapshot of solid waste management to 2050, Urban Development”, World Bank Publications, 2018. [Online]. http://hdl.handle.net/10986/30317.

[6] T. Solheimslid, H. K. Harneshaug, N. Lummen, “Calculation of first-¨ law and second-law-efficiency of a Norwegian combined heat and power facility driven by municipal waste incineration–A case study”, Energy Conversion and Management 95 (2015) 149. https://doi.org/10.1016/j.enconman.2015.02.026.

[7] M. Ni, D. Y. Leung, M. K. Leung & K. Sumathy, “An overview of hydrogen production from biomass”, Fuel processing technology 87 (2006) 461. https://doi.org/10.1016/j.fuproc.2005.11.003.

[8] A. Patwa, D. Parde, D. Dohare, R. Vijay & R. Kumar, “Solid waste characterization and treatment technologies in rural areas: An Indian and international review”, Environmental Technology & Innovation 20 (2020) 101066. https://doi.org/10.1016/j.eti.2020.101066.

[9] Z. Han, Y. Liu, M. Zhong, G. Shi, Q. Li, D. Zeng & Y. Xie, “Influencing factors of domestic waste characteristics in rural areas of developing countries”, Waste management 72 (2018) 45. https://doi.org/10.1016/j.wasman.2017.11.039.

[10] S. T. Tan, H. Hashim, J. S. Lim, W. S. Ho, C. T. Lee & J. Yan, “Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia”, Applied Energy 136 (2014) 797. https://doi.org/10.1016/j.apenergy.2014.06.003

[11] F. S. Zhang, S. I. Yamasaki & M. Nanzyo, “Application of waste ashes to agricultural land—effect of incineration temperature on chemical characteristics”, Science of the total environment 264 (2001) 205. https://doi.org/10.1016/S0048-9697(00)00715-4.

[12] V. K. Petropavlovskaya, A. N. Shishkov, S. A. Zamaraev, A. V. Goncharova & D. A. Zolnikov, “Considering different methods of thermal utilization of municipal solid waste”, Earth and Environmental Science 990 (2022) 012067. https://doi.org/10.1088/1755-1315/990/1/012067.

[13] Z. Jing, X. Fan, L. Zhou, J. Fan, Y. Zhang, X. Pan & E. H. Ishida, “Hydrothermal solidification behavior of municipal solid waste incineration bottom ash without any additives”, Waste management 33 (2013) 1182. https://doi.org/10.1016/j.wasman.2013.01.038.

[14] Z. Shareefdeen, A. Elkamel & S. Tse, “Review of current technologies used in municipal solid waste-to-energy facilities in Canada”, Clean Technologies and Environmental Policy”, 17 (2015) 1837. https://doi.org/10.1007/s10098-015-0904-2.

[15] E. I. Bureau, “Reference document on the best available techniques for waste incineration”, European Union, Brussels, (2005). [Online]. https://op.europa.eu/en/publication-detail/-/publication/075477b7-329a-11ea-ba6e-01aa75ed71a1/language-en.

[16] S. D. Aurpa, S. Hossain & M. A. Islam, “Effect of plastic waste on volume consumption of landfill during the COVID-19 pandemic”, Sustainability 14 (2022) 15974. https://doi.org/10.3390/su142315974.

[17] G. Mao, Y. Zhang, W. Wen & D. He, “Analysis of municipal solid waste treatment status and the feasibility of incineration in China”, Sustainability 11 (2019) 1433. https://doi.org/10.3390/su11051433.

[18] E. Allegrini, C. Vadenbo, A. Boldrin & T. F. Astrup, “Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash”, Journal of Environmental management 151 (2015) 132. https://doi.org/10.1016/j.jenvman.2014.11.032.

[19] C. C. Wiles, “Municipal solid waste combustion ash: State-of-theknowledge”, Journal of hazardous materials 47 (1996) 325. https://doi.org/10.1016/0304-3894(95)00120-4.

[20] M. D. Meena, M. L. Dotaniya, B. L. Meena, P. K. Rai, R. S. Antil, H. S. Meena & R. B. Meena, “Municipal solid waste: Opportunities, challenges and management policies in India: A review”, Waste Management Bulletin 1 (2023) 4. https://doi.org/10.1016/j.wmb.2023.04.001.

[21] H. Durak, “Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery”, Processes 11 (2023) 2092. https://doi.org/10.3390/pr11072092.

[22] A. M. M. Hassan, M. Asif, M. A. Al-Mansur, M. R. Uddin, S. J. Alsufyani, F. Yasmin & M. U. Khandaker, “Characterization of municipal solid waste for effective utilization as an alternative source for clean energy production”, Journal of Radiation Research and Applied Sciences 16 (2023) 100683. https://doi.org/10.1016/j.jrras.2023.100683.

[23] A. Karmakar, T. Daftari, K. Sivagami, M. R. Chandan, A. H. Shaik, B. Kiran, S. Chakraborty, “A comprehensive insight into Waste to Energy conversion strategies in India and its associated air pollution hazard”, Environmental Technology & Innovation 29 (2023) 103017. https://doi.org/10.1016/j.eti.2023.103017.

[24] G.L Tihin, K.H. Mo, C.C. Onn, H.C. Ong, Y.H. Taufiq-Yap, H.V. Lee, ”Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing”, Alexandria Engineering Journal 84 (2023) 153. https://doi.org/10.1016/j.aej.2023.10.043.

[25] B. Karpan, A. A. A. Raman & M. K. T Aroua, “Waste-to-energy: Coallike refuse derived fuel from hazardous waste and biomass mixture”, Process Safety and Environmental Protection 149 (2021) 655. https://doi.org/10.1016/j.psep.2021.03.009.

[26] M. D. Meena, M. L. Dotaniya, B. L. Meena, P. K. Rai, R. S. Antil, H. S. Meena, L. K. Meena, C. K. Dotaniya, V. S. Meena, A. Ghosh, K. N. Meena, A. K. Singh, V. D. Meena, P. C. Moharana, S. K. Meena,

Ch. Srinivasarao, A. L. Meena, S. Chatterjee, D. K. Meena, M. Prajapat & R. B. Meena, “Municipal solid waste: Opportunities, challenges and management policies in India: A review”, Waste Management Bulletin 1 (2023) 4. https://doi.org/10.1016/j.wmb.2023.04.001.

[27] Environmental Protection Agency, “EPA 2021 in Review”, 2021. [Online]. https://www.epa.ie/publications/corporate/governance/epa-2021-in-review.php.

Published

2025-06-12

How to Cite

Analysis of industrial solid waste for secure and eco-friendly disposal by incineration practices. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2711. https://doi.org/10.46481/jnsps.2025.2711

Issue

Section

Chemistry

How to Cite

Analysis of industrial solid waste for secure and eco-friendly disposal by incineration practices. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2711. https://doi.org/10.46481/jnsps.2025.2711