A Study of the Relationship Between Southward Bz > -10 nT and Storm Time Disturbance Index During Solar Cycle 23

Authors

  • T. W. David Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; Department of Physics and Astronomy, University of Leicester, Leicester, UK https://orcid.org/0000-0002-6589-2930
  • B. J. Adekoya Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria https://orcid.org/0000-0002-1443-5510
  • C. M. Michael Department of Physics and Astronomy, University of Leicester, Leicester, UK https://orcid.org/0000-0002-3248-5730
  • S. A. Adekoya Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • O. A. Adenuga Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • S. O. Kareem Department of Physics, Mountain Top University, Prayer City, Nigeria
  • H. T. Oladunjoye Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • A. E. Ajetunmobi Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • O. T. Williams Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • D. T. Ogundele Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Keywords:

Magnetic reconnection , Dst, intense geomagnetic storm, moderate southward IMF- Bz, solar maximum, solar minimum, solar cycle

Abstract

Magnetic reconnection can be used for studying the geoeffective processes in the coupled Sun–Solar wind – Magnetosphere dynamics leading to geomagnetic disturbance. In this study, 1-hour resolution solar wind plasma parameters from OMNIweb were used to investigate the relationship between moderate southward interplanetary magnetic field, IMF-Bz (i.e., Bz > -10 nT) and geomagnetic storm time disturbance, Dst , during the ascending, maximum and descending phases of solar cycle 23. Occurrences of different classes of geomagnetic storms during moderate southward Bz are reported. The occurrence of weak and moderate geomagnetic storms is more predominant during maximum solar activity than intense and super intense storms. It was found that 10.11 % (181) of all the classes of the storm were intense, and 0.17 % (3) were super intense storms. Furthermore, it was found that 4 (2.2 %) out of the 181 intense storms were caused by southward Bz > -10 nT which were associated with the complex structure due to the high-speed solar wind stream and corotating interacting region. In such a complex structure and Bz > -10 nT, we observed that an intense geomagnetic storm rarely occurs and if it does, would be predominant around solar maximum. It was found that long-duration (\Delta t > 6 hrs) of southward Bz (i.e., -10 nT < Bz  <= -3.6 nT ) can also lead to an intense geomagnetic storm during the solar maximum and descending phase (moderate solar activity) of a solar cycle. The complex structure of intense geomagnetic storms associated with the Bz > -10 nT is rare and possesses a special configuration of magnetic field and solar wind parameters structures which are CIR manifestations.

Dimensions

C. G. Falthammar, “Magnetosphere Ionosphere Interactions - Near-Earth Manifestations of the Plasma Universe”, IEEE Transactions on Plasma Science 14 (1986) 616.

G. S. Lakhina, S. Alex, & R. Rawat, An Overview of the Magnetosphere, Substorms and Geomagnetic Storms. Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes, Astrophysics and Space Science Proceedings, Springer, Netherland (2008).

B. J. Adekoya & V. U. Chukwuma, “Classification and quantification of solar wind driver gases leading to intense geomagnetic storms”, Advances in Space Research 61 (2018) 274. https://doi.org/10.1016/j.asr.2017.09.036.

B. T. Tsurutani, Ezequiel Echer, Fernando L. Guarnieri & Walter D. Gonzalez, “The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23” Journal of Atmospheric and Solar-Terrestrial Physics 73 (2011) 164. https://doi.org/10.1016/j.jastp.2010.04.003.

M. Grandin, Aikio, A. T., & A. Kozlovsky, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. Journal of Geophysical Research: Space Physics 124 (2019) 3871. https://doi.org/10.1029/2018JA026396.

B. S. Rathore, Subhash C. Kaushik, K. A. Firoz, D. C. Gupta, A. K. Shrivastava, Krishna Kant Parashar & R. M. Bhaduriya, “A Correlative Study of Geomagnetic Storms Associated with Solar Wind and IMF Features During Solar Cycle 23” International Journal of Applied Physics and Mathematics 1 (2011) 149.

K. -E. Choi, D.-Y. Lee, K.-C. Choi, & J. Kim, Statistical properties and geoeffectiveness of southward interplanetary magnetic field with emphasis on weakly south-ward Bz events, Journal of Geophysical Research: Space Physics 122 (2017) 4921. doi:10.1002/2016JA023836.

Y. Kamide & W. Baumjohann, Magnetosphere-Ionosphere coupling, Springer, Heidelberg, (1993).

W. Baumjohann & R. A. Treumann, Basic Space Plasma Physics, Imperial College Press, (1997).

E. Echer, B. T. Tsurutani & W. D. “Gonzalez, Interplanetary origins of moderate (-100 nT < D st <= -50 nT) geomagnetic storms during solar cycle 23 (1996-2008)”, Journal of Geophysical Research - Space Physics 118 (2013) 385. doi: 10.1029/2012JA018086

E. Echer, W. D. Gonzalez & B. T. Tsurutani, “Statistical studies of geomagnetic storms with peak Dst <= -50 nT from 1957 to 2008”, Journal of Atmospheric and Solar-Terrestrial Physics 73 (2011) 1454. doi:10.1016/j.jastp.2011.04.021.

Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. -I., & E. J. Smith, “Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978-1979)”, Journal of Geophysical Research 93 (1988) 8519.

Y. Kamide, Yokoyama, N., Gonzalez, W., Tsurutani, B. T., Daglis, I.A., Brekke, A., & S. Masuda, “Two-step development of geomagnetic storms” J. Geophys. Res. 103 (1998) 6917. https://doi.org/10.1029/97JA03337.

W. D. Gonzalez, B. T. Tsurutani & A. L. Clua De Gonzalez, “The interplanetary causes of geomagnetic storms”, Space Science Review 88 (1999) 529.

W. D. Gonzalez, A. L. Clúa de Gonzalez, J. H. A. Sobral, A. Dal Lago & L. E. Vieira, “Solar and Interplanetary Causes of Very Intense Geomagnetic Storms”, Journal of Atmospheric and Solar-Terrestrial Physics 63 (2001) 403.

J. E. Borovsky & M. H. Denton, “Differences between CME-driven storms and CIR-driven storms”, Journal of Geophysical Research 111 (2006) A07S08

J. Zhang, I. G. Richardson, Webb, D.F., Gopalswamy, N., Huttunen, E. Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C. -C., Yashiro, S. & A. N. Zhukov, “Solar and interplanetary sources of major geomagnetic storms (D st <= -100 nT) during 1996 - 2005”, Journal of Geophysical Research 112 (2007) A10102. https://doi.org/10.10 29/2007JA012321.

E. Echer, W. D. Gonzalez, & B. T. Tsurutani, “Interplanetary conditions leading to super intense geomagnetic storms (D st <= -250 nT) during solar cycle 23”, Geophysical Research Letter 35 (2008), L06S03. https://doi.org/10.1029/2007GL031755.

J. A. Hutchinson, D. M. Wright, & S. E. Milan, “Geomagnetic storms over the last solar cycle: A superposed epoch analysis”, Journal of Geophysical Research 116 (2011), A09211, doi:10.1029/2011JA016463.

E. K. J. Kilpua, H. Hietala, D. L. Turner, H. E. J. Koskinen, T. I. Pulkkinen, J. V. Rodriguez, G. D. Reeves, S. G. Claudepierre, & H. E. Spence, “Unraveling the drivers of the storm time radiation belt response”, Geophysical Research Letter 42 (2015) 3076. https://doi.org/10.1002/2015GL063542.

P. I. Reyes, V. A. Pinto, & P. S. Moya, “Geomagnetic storm occurrence and their relation with solar cycle phases”, Space Weather 19 (2021) e2021SW002766. https://doi.org/10.1029/2021SW002766.

W. D. Gonzalez, J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, & V. M. Vasyliunas, “What is a geomagnetic storm?” Journal of Geophysical Research 99 (1994) 5771. https://doi.org/10.1029/93JA02867.

W. D. Gonzalez, E. Echer, A. L. Clua-Gonzalez & B. T Tsurutani, “Interplanetary origin of intense geomagnetic storms (D st < -100 nT) during solar cycle 23”, Geophysical Research Letter 34 (2007) L06101. https://doi.org/10.1029/2006GL028879.

W. D. Gonzalez & B. T. Tsurutani, “Criteria of interplanetary parameters causing intense magnetic storms (D st < -100 nT)”, Planetary and Space Science 35 (1987) 1101.

J. R. Kan & L. C. Lee, “Energy coupling function and solar wind-magnetosphere dynamo”, Geophysical Research Letter 6 (1979) 577.

W. D. Gonzalez, B. T. Tsurutani, A. L. C. Gonzalez, E. J. Smith, F. Tang & S. -I. Akasofu, “Solar Wind-Magnetosphere Coupling During Intense Magnetic Storms (1978-1979)”, Journal of Geophysical Research 94 (1989) 8835.

P. T. Newell, T. Sotirelis, K. Liou, C. -I. Meng, & F. J. Rich, “A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables”, Journal of Geophysical Research 112 (2007) A01206.

S. E. Milan, J. S. Gosling & B. Hubert, “Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap”, Journal of Geophysical Research 117 (2012) A03226. doi:10.1029/2011JA017082.

W. Baumjohann, & R. A. Treumann, “Basic Space Plasma Physics”, Published by Imperial College Press, 57, Shelton Street, Covent Garden, London WC2H 9HE, ISBN 1-86094-X (1997).

B. O. Adebesin, “Roles of interplanetary and geomagnetic parameters in ’intense’ and ’very intense’ magnetic storms generation and their geoeffectiveness”, Acta Geodaetica et Geophysica Hungarica 43 (2008) 383. https://doi.org/10.1556/AGeod. 43.2008.4.2.

E. K. J. Kilpua, J. G. Luhmann, J. Gosling, Y. Li, H. Elliott, C. T. Russell, L. Jian, A. B. Galvin, D. Larson, P. Schroeder, K. Simunac, & G. Petrie, “Small solar wind transients and their connection to the large-scale coronal structure” Solar Physics 256 (2009) 327. doi:10.1007/s11207-009-9366-1

E. K. J. Kilpua, A. Balogh R. von Steiger & Y. D. Liu, “Geoeffective Properties of Solar Transients and Stream Interaction Regions”, Space Science Review (2017). doi:10.1007/s11214-017-0411-3.

W. Yu, C. J. Farrugia, N. Lugaz, A. B. Galvin, E. K. J. Kilpua, H. Kucharek, C. Möstl, M. Leitner, R. B. Torbert, K. D. C. Simunac, J. G. Luhmann, A. Szabo, L. B. Wilson, K. W. Ogilvie & J. -A. Sauvaud, A statistical analysis of properties of small transients in the solar wind 2007-2009: STEREO and wind observations. J. Geophys. Res. Space Phys. 119 (2014) 689. doi:10.1002/2013JA019115

L. F. Burlaga, K. W. Behannon, & L. W. Klein, “Compound streams, magnetic clouds, and major geomagnetic storms”, Journal of Geophysical Research 92 (1987) 5725.

Santosh Kumar, M. P. Yadav & Amita Raizada, “Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms”, Journal of Astrophysics and Astronomy 29 (2008) 263.

B. S. Rathore, “Effect of Solar outcomes on earth magnetosphere during solar cycle-24” Indian Journal of Radio & Space Physics 50 (2021) 142.

R. Rawat, E. Echer, & W. D. Gonzalez, “How different are the solar wind-interplanetary conditions and the consequent geomagnetic activity during the ascending and early descending phases of the solar cycles 23 and 24?”, Journal of Geophysical Research: Space Physics 123 (2018) 6621. https://doi.org/10.1029/2018JA025683.

Meena. Pokharia, Lalan Prasad, Chandrashekhar Bhoj & Chandni Mathpal, “Study of Geomagnetic Storms and Solar and Interplanetary Parameters for Solar Cycle 22 and 24”, Solar Physics 293 (2018) 126. https://doi.org/10.1007/s11207-018-1345-y

W. D. Gonzalez, B. T. Tsurutani, R. P. Lepping & R. Schwenn, “Interplanetary phenomena associated with very intense geomagnetic storms”, Journal of Atmospheric and Solar Terrestrial Physics 64 (2002) 173.

T. W. David, A. N. Akintola & B. J. Adekoya, “Time/level of ionospheric response to geomagnetic storm of 25-26 July 1981 at different latitudes”, Indian journal of radio & space physics 40 (2011) 311.

B. J. Adekoya & B. O. Adebesin, “Ionospheric and solar wind variation during magnetic storm onset and main phase at low- and mid-latitudes”, Acta Geophysica 63 (2015) 1150.

S. E. Milan, J. S. Gosling & B. Hubert, “Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap”, Journal of Geophysical Research 117 (2012) A03226. doi:10.1029/2011JA017082.

C. M. N. Candido, I. S. Batista, V. Klausner, P. M. de Siqueira Negreti, F. Becker-Guedes, E. R. de Paula, J. Shi & E. S. Correia, “Response of the total electron content at Brazilian low latitudes to corotating interaction region and high-speed streams during solar minimum 2008”, Earth, Planets and Space 70 (2018) 1.

L. F. Burlaga, R. Skoug, C. W. Smith, & D. F. Webb,” Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998-1999”, Journal of Geophysical Research 106 (2001) 20957.

A. Ojeda-Gonzalez, V. Klausner, O. Mendes, M.O. Domingues & A. Prestes, “Characterization of the complex ejecta measured in situ on 19 - 22 March 2001 by six Different methods”, Solar Physics 292 (2017) 160.

Published

2022-11-11

How to Cite

A Study of the Relationship Between Southward Bz > -10 nT and Storm Time Disturbance Index During Solar Cycle 23. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 620. https://doi.org/10.46481/jnsps.2022.620

Issue

Section

Original Research

How to Cite

A Study of the Relationship Between Southward Bz > -10 nT and Storm Time Disturbance Index During Solar Cycle 23. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 620. https://doi.org/10.46481/jnsps.2022.620