Eyring-Powell MHD nanoliquid and entropy generation in a porous device with thermal radiation and convective cooling

Authors

  • S. O. Salawu Department of Mathematics, Bowen University, Iwo, Nigeria
  • R. A. Kareem Department of Mathematics, Lagos State University of Science and Technology, Ikorodu, Nigeria.
  • J. O. Ajilore Department of Mathematics, Lagos State University of Science and Technology, Ikorodu, Nigeria.

Keywords:

Entropy generation; Nanoliquid; Non-Newtonian; Hydromagnetic; Porosity

Abstract

This study investigates the flow of magnetohydromagnetic (MHD) Eyring-Powell chemical reaction nanoliquid in a permeable boundless device with wall cooling and thermal radiation. The fully developed Cauchy non-Newtonian fluid model is stimulated by species reaction and the stretching sheet under gravity influence. Using the Rosseland radiation approximation model with an appropriate similarity variable, the dimensionless coupled derivatives are obtained. A shooting numerical technique is utilized to determine the thermophysical effects on the flow characteristics. The solution results are computed and given in graphs and tables for clear demonstration and clarification. The results show that entropy is minimized by augmenting the magnetic field, porosity, and thermodynamic equilibrium. Also, parameters that enhance internal heat must be monitored to prevent chemical reaction nanoliquid blowup. 

Dimensions

A. R. Hassan, J. A. Gbadeyan & S. O. Salawu, “The effects of thermal radiation on a reactive hydromagnetic internal heat generating fluid flow through parallel porous plates”, Springer Proceedings in Mathematics & Statistics 259 (2018) 183.

E. O. Fatunmbi & S. O. Salawu, “Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips”, Int. J. of modelling and Simulation 42 (2022) 359.

S. O. Salawu & M. S. Dada, “Lie group analysis of soret and dufour effects on radiative inclined magnetic pressure-driven flow past a Darcyforchheimer medium”, J. of the Serbian Soc. for Comput. Mech. 12 (2018) 108.

A. S. Idowu & B. O. Falodun, “Effects of thermophoresis, Soret-Dufour on heat and mass transfer flow of magnetohydrodynamics non-Newtonian nanofluid over an inclined plate”, Arab J. of Basic and Applied Sci. 27 (2020) 149.

A.S. Idowu, M.T. Akolade, J.U. Abubakar & B.O. Falodun, “MHD free convective heat and mass transfer flow of dissipative Casson fluid with variable viscosity and thermal conductivity effects”, J. of Taibah Uni. for Sci. 14 (2020) 851.

S. O. Salawu, R. A. Kareem & A. Abolarinwa & S. A. Shonola, “Radiative thermal criticality and entropy generation of hydromagnetic reactive Powell-Eyring fluid in saturated porous media with variable conductivity”, Int. Communi. in Heat and Mass Transfer 124 (2021) 104613.

S. O. Salawu, A. R. Hassan, A. Abolarinwa & N. K. Oladejo, “Thermal stability and entropy generation of unsteady reactive hydromagnetic Powell-Eyring fluid with variable electrical and thermal conductivities”, Alexandria Engin. J. 58 (2019) 519.

S. Nadeem & S. Saleem, ”Mixed convection flow of Eyring-Powell fluid along a rotating cone”, Results in Physics 4 (2014) 54.

N. S. Akbar, M. Ebaid & Z. H. Khan, “Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet”, J. of Magnetism and Magnetic Materials 382 (2015) 355.

T. Hayat, M. Awais & S. Asghar, “Radiative effects in a three dimensional flow of MHD Eyring-Powell fluid”, J. Egypt Math. Soc. 21 (2013) 379.

M. Ishaq, G. Ali, Z. Shah, S. Islam & S. Muhammad, “Entropy generation on nanofluid thin film flow of Eyring-Powell fluid with thermal radiation and MHD effect on an unsteady porous stretching sheet”, Entropy 20 (2018) 412.

F. O. Akinpelu, R. A. Oderinu & A. D. Ohaegbue, “Analysis of hydromagnetic double exothermic chemical reactive flow with convective cooling through a porous medium under bimolecular kinetics”, J. Nig. Soc. Phys. Sci. 4 (2022) 130.

S. O. Adesanya, H. A. Ogunseye & S. Jangili, “Unsteady squeezing flow of a radiative Eyring-Powell fluid channel flow with chemical reactions”, Int. J. of Thermal Sciences 125 (2018) 440-447.

A.S. Idowu & B.O. Falodun, “Variable thermal conductivity and viscosity effects on non-Newtonian fluids flow through a vertical porous plate under Soret-Dufour influence”, Mathematics and Computers in Simulation 177 (2020) 358.

T. Hayat, T. Muhammad, A. Qayyum, A. Alsaedi & M. Mustafa, “On squeezing flow of nanofluid in the presence of magnetic field effects”, J. of Molecular Liquids 213 (2016) 179.

F. I. Alao, A.I. Fagbade & B. O. Falodun, “Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid past a semi-infinite vertical plate with viscous dissipation”, J. of the Nigerian Mathematical Soc. 35 (2016) 142.

T. M. Agbaje, S. Mondal, S.S Motsa & P. Sibanda, “A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation”, Alexandria Engin. J. 56 (2017) 81.

M. Y. Malik, I. Khan, A. Hussain & T. Salahuddin, ”Mixed convection flow of MHD Eyring-Powell nanofluid over a stretching sheet: a numerical study”, AIP Advances 5 (2015) 117118.

M. M. Bhatti, T. Abbas, M.M. Rashidi, M. S. Ali & Z. Yang, “Entropy generation on MHD Eyring-Powell nanofluid through a permeable stretching surface”, Entropy 18 (2016) 224.

S. O. Salawu, R.A. Oderinu & A. D. Ohaegbue, “Thermal runaway and thermodynamic second law of a reactive couple stress hydromagnetic fluid with variable properties and Navier slips”, Scientific African 7 (2020) e00261.

S. O. Salawu & S. I. Oke, “Inherent irreversibility of exothermic Chemical Reactive third-grade Poiseuille flow of a Variable Viscosity with Convective Cooling”. J. Appl. Comput. Mech. 4 (2017) 167.

M. M. Rashidi, M. Ali, N. Freidoonimehr & F. Nazari, “Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm”, Energy 55 (2013) 497.

T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, “Entropy generation in flow with silver and copper nanoparticles”, Colloids and Surfaces A 539 (2018) 335.

M. W. A. Khan, M. I. Khan, T. Hayat & A. Alsaedi, “Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation”, Physica B: Condensed Matter 534 (2018) 113.

A. M. Rashad, T. Armaghani, A.J. Chamkha & M.A. Mansour, “Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location”, Chinese J. of Physics 17 (2017) 949.

S. O. Salawu, M.S. Dada & O.J. Fenuga, “Thermal explosion and irre10

versibility of hydromagnetic reactive couple stress fluid with viscous dissipation and Navier slips”, Theoretical & Applied Mechanics Letters 9 (2019) 246.

J. Qing, M.M. Bhatti, M.A. Abbas, M.M. Rashidi & M. E. Ali, “Entropy generation on MHD casson nanofluid flow over a porous stretching/shrinking surface”, Entropy 18 (2016) 123.

M.H. Abolbashari, N. Freidoonimehr, F. Nazari & M. M. Rashidi, “Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid”, Powder Technology 267 (2014) 256.

E.O. Fatunmbi, A.T. Adeosun & S.O. Salawu, “Irreversibility analysis for Eyring–Powell nanoliquid flow past magnetized Riga device with nonlinear thermal radiation”, Fluid 6 (2021) 416.

S. O. Salawu & H.A. Ogunseye, “Entropy generation of a radiative hydromagnetic Powell-Eyring chemical reaction nanofluid with variable conductivity and electric field loading”, Results in Engineering 5 (2020) 100072.

H. A. Ogunseye, S.O. Salawu, Y.O. Tijani, M. Riliwan & P. Sibanda, “Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring-Powell nanofluid flow with variable thermal conductivity and chemical reaction”, Multidiscipline Modeling in Materials and Structures 15 (2019) 1100.

Published

2022-10-08

How to Cite

Eyring-Powell MHD nanoliquid and entropy generation in a porous device with thermal radiation and convective cooling. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 924. https://doi.org/10.46481/jnsps.2022.924

Issue

Section

Original Research

How to Cite

Eyring-Powell MHD nanoliquid and entropy generation in a porous device with thermal radiation and convective cooling. (2022). Journal of the Nigerian Society of Physical Sciences, 4(4), 924. https://doi.org/10.46481/jnsps.2022.924