Pattern and variation of electron ionisation gradient as related to the plasma distribution mechanisms during the total solar eclipse of March 20, 2015

Authors

Abstract

The pattern and electron ionisation gradient associated with the obstruction of solar ionizing radiation (SIR) provided a good opportunity to study the plasma movements and neutral compositions during the solar eclipse at mid-latitude. The electron ionisation gradient (dN/dh) as related to the plasma distributions at the mid-latitudes during the total solar eclipse of 20 March 2015 was investigated. The ionogram inversion profile data for each station along the solar eclipse path were obtained from the database of the Global Ionospheric Radio Observatory (GIRO). The solar eclipse's obscuration percentage at these locations ranges from 69% to 94%. The variations in the dN/dh and its corresponding height hdN during the eclipse window are related to the solar eclipse’s turnoff and onset effect on SIR. The ionisation gradient valley caused by the solar eclipse was associated with the vertical transport and diffusion processes. The dN/dh varies correspondingly with NmF2, responding to changes in photoionisation, and the peak responses occurred 11 – 20 mins after the eclipse’s totality. The height (hdN) at which the maximum ionisation gradient was obtained followed a similar pattern to hmF2, but the peak response of hdN is lower across all stations. In contrast to the hmF2, the time lag between the ionisation gradient's minimum peak and the eclipse's maximum magnitude ranges from 25 to 40 mins. The neutral composition changes and plasma movements during the solar eclipse can be explained by dN/dh.

Dimensions

[1] H. Le, L. Liu, X. Yue, W. Wan & B. Ning, “Latitudinal dependence of the ionospheric response to solar eclipse”, Journal of Geophysical Research: Space Physics 114 (2009) A07308. http://dx.doi.org/10.1029/2009JA014072.

[2] B. J. Adekoya, B. O. Adebesin, T. W. David, S. O. Ikubanni, S. J. Adebiyi, O. S. Bolaji & V. U. Chukwuma “Solar-eclipse-induced perturbations at mid-latitude during the 21 August 2017 event”, Annales Geophysicae 37 (2019) 171. https://doi.org/10.5194/angeo-37-171-2019.

[3] M. Mart´?nez-Ledesma, M. Bravo, B. Urra, J. Souza & A. Foppiano “Prediction of the ionospheric response to the 14 December 2020 total solar eclipse using SUPIM-INPE”, Journal of Geophysical Research: Space Physics 125 (2020) e2020JA028625. https://doi.org/10.1029/2020JA028625.

[4] V. U. Chukwuma & B. J. Adekoya “The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude”, Advances in Space Research 58 (2016) 1720. https://doi.org/10.1016/j.asr.2016.06.038.

[5] K. Cheng, Y. –N. Huang & S. –W. Chen, “Ionospheric effects of the so lar eclipse of September 23, 1987, around the equatorial anomaly crest region”. Journal of Geophysical Research: Space Physics 97 (1992) 103. https://doi.org/10.1029/91JA02409.

[6] I. C. F. Muller-Wodarg, A. D. Aylward & M. Lockwood, “Effects of a Mid-Latitude Solar Eclipse on the Thermosphere and Ionosphere – A Modelling Study”, Geophysical Research Letter 25 (1998) 3787. https://doi.org/10.1029/1998GL900045.

[7] C. J. Davis, M. Lockwood, S. A. Bell, J. A. Smith & E. M. Clarke, “Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945”, Annales Geophysicae 18 (2000) 182. https://doi.org/10.1007/s00585-000-0182-z.

[8] C. J. Davis, E. M. Clarke, R. A. Bamford, M. Lockwood & S. A. Bell, “Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth’s ionosphere during total solar eclipses from 1932 to 1999”, Annales Geophysicae 19 (2001) 263. https://doi.org/10.5194/angeo-19-263-2001.

[9] E. L. Afraimovich, E. A. Kosogorov & O. S. Lesyuta, “Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network”, Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 1933. https://doi.org/10.1016/S1364-6826(02)00221-3.

[10] P. Sauli, P. Abry, J. Boska & L. Duchayne, “Wavelet characterization of ionospheric acoustic and gravity waves occurring during the solar eclipse of 11 August 1999”, Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 586. https://doi.org/10.1016/j.jastp.2005.03.024.

[11] J. J. Curto, B. Heilig & M. Pinol, “Modeling the geomagnetic effects caused by the solar eclipse of 11 August 1999”, Journal of Geophysical Research: Space Physics 111 (2006) A07312. http://dx.doi.org/10.1029/2005JA011499.

[12] N. Jakowski, S. M. Stankov, V. Wilken, C. Borries, D. Altadill, J. Chum, D. Buresova, J. Boska, P. Sauli, F. Hruska & Lj. R. Cander, “Ionospheric behaviour over Europe during the solar eclipse of 3 October 2005”. Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 836. https://doi.org/10.1016/j.jastp.2007.02.016.

[13] E. I. Grigorenko, M. V. Lyashenko & L. F. Chernogor, “Effects of the Solar Eclipse of March 29, 2006, in the Ionosphere and Atmosphere”, Geomagnetism and Aeronomy 48 (2008) 337. https://doi.org/10.1134/S0016793208030092.

[14] H. Le, L. Liu, F. Ding, Z. Ren, Y. Chen, W. Wan, B. Ning, X. Guirong, M. Wang, G. Li, B. Xiong & H. Lianhuan, “Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse”. Journal of Geophysical research: Space Physics 115 (2010) A10313. https://doi.org/10.1029/2010JA015609.

[15] X. Wang, J. J. Berthelier & J. P. Lebreton, “Ionosphere variations at 700 km altitude observed by the DEMETER satellite during the 29 March 2006 solar eclipse”, Journal of Geophysical Research: Space Physics 115 (2010) A11312. https://doi.org/10.1029/2010JA015497.

[16] A. Paul, T. Das, S. Ray, A. Das, D. Bhowmick & A. DasGupta, “Response of the equatorial ionosphere to the total solar eclipse of 22 July 2009 and annular eclipse of 15 January 2010 as observed from a network of stations situated in the Indian longitude sector”, Annales Geophysicae 29 (2011) 1955. https://doi.org/10.5194/angeo-29-1955-2011.

[17] M. V. Lyashenko & L. F. Chernogor, “Solar eclipse of August 1, 2008, over Kharkov: 3. calculation results and discussion”, Geomagnetism and Aeronomy 53 (2013) 367. http://dx.doi.org/10.1134/_S0016793213020096.

[18] Y. J. Chuo, “Ionospheric effects on the F region during the sunrise for the annular solar eclipse over Taiwan on 21 May 2012”, Annales Geophysicae 31 (2013) 1891. https://doi.org/10.5194/angeo-31-1891-2013.

[19] N. Scafetta & A. Mazzarella, “Effects of March 20, 2015, partial (?50%) solar eclipse on meteorological parameters in the urban area of Naples (Italy)”, Annals of Geophysics 59 (2016) A0106. https://doi.org/10.4401/ag-6899.

[20] H. Rishbeth, “Solar eclipses and ionospheric theory”, Space Science Review 8 (1968) 543. https://doi.org/10.1007/BF00175006.

[21] B. J. Adekoya & V. U. Chukwuma, “Response of the mid-latitude ionospheric F2 to total solar eclipses of solar cycle 23”, Indian Journal of Radio Science and Space Physics 41 (2012) 594. https://nopr.niscpr.res.in/handle/123456789/15634.

[22] B. G. Fejer, “The electrodynamics of the low-latitude ionosphere: recent results and future Challenges”, Journal of Atmospheric and Solar-Terrestrial Physics 59 (1997) 1465. https://doi.org/10.1016/S1364-6826(96)00149-6.

[23] B. O. Adebesin, B. J. Adekoya & T. W. David, “Plasma transport process in the equatorial/low-latitude ionosphere”, Advances in Space Research 63 (2019) 1619. https://doi.org/10.1016/j.asr.2018.11.013.

[24] B. O. Adebesin, J. O. Adeniyi, I. A. Adimula & B. W. Reinisch, “Equatorial vertical plasma drift velocities and electron densities inferred from ground-based ionosonde measurements during low solar activity”, Journal of Atmospheric and Solar-Terrestrial Physics 97 (2013) 58. https://doi.org/10.1016/j.jastp.2013.02.010.

[25] B. J. Adekoya, V. U. Chukwuma & B. W. Reinisch, Ionospheric vertical plasma drift and electron density response during total solar eclipses at equatorial/low latitudes. Journal of Geophysical Research: Space Physics 120 (2015) 8066. https://doi.org/10.1002/2015JA021557.

[26] A. Meza, G. Bosch, M. P. Natali & B. Eylenstein “Ionospheric and geomagnetic response to the total solar eclipse on 21 August 2017”, Advances in Space Research 69 (2022) 16. https://doi.org/10.1016/j.asr.2021.07.029.

[27] C. O. Hines, “Internal atmospheric gravity waves at ionospheric heights”, Canadian Journal of Physics 38 (1960) 1441. https://doi.org/10.1139/p60-150.

[28] G. L. Goodwin & G. J. Hobson, “Atmospheric gravity waves generated during a solar eclipse”, Nature 275 (1978) 109. https://doi.org/10.1038/275109a0.

[29] B. W. Jones, “A search for atmospheric pressure waves from the total solar eclipse of 9 March 1997”, Journal of Atmospheric and Solar-Terrestrial Physics 61 (1999) 1017. https://doi.org/10.1016/S1364-6826(99)00073-5.

[30] H. Rishbeth, K. J. F. Sedgemore-Schlthess & T. Ulich, “Semiannual and annual variations in the height of the ionospheric F2-peak” Annales Geophysicae 18 (2000) 285. https://doi.org/10.1007/s00585-000-0285-6.

[31] B. J. Adekoya & V. U. Chukwuma, “Ionospheric F2 layer responses to total solar eclipses at low- and midlatitude”, Journal of Atmospheric and Solar-Terrestrial Physics 138 (2016) 136. https://doi.org/10.1016/j.jastp.2016.01.006.

[32] W. Wang, T. Dang, J. Lei, S. Zhang, B. Zhang & A. Burns, “Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill”, Journal of Geophysical Research: Space Physics 124 (2019) 2978. https://doi.org/10.1029/2018JA025479.

[33] M. Yasar, “The change of diffusion processes for O++ N2? NO++ N reaction in the ionospheric F region during the solar eclipse over Kharkov”, Thermal Science 25 (2021) 51. https://doi.org/10.2298/TSCI200521006Y.

[34] R. Atici & S. Sagir, “The Variation of Ionospheric TEC During Solar Eclipse on March 20, 2015”. Celal Bayar University Journal of Science 18 (2022) 403. https://dergipark.org.tr/en/pub/cbayarfbe/issue/74009/1019000.

[35] B. O. Adebesin, J. O. Adeniyi, O. A. Oladipo, A. O. Olawepo & I. A. Adimula, “Quantitative Characteristics of Equatorial Ionisation Gradient above 150 km at Low Solar Activity”, Radio Science 53 (2018) 948. https://doi.org/10.1029/2018RS006560.

[36] B. W. Reinisch & I. A. Galkin, “Global Ionosphere Radio Observatory (GIRO)”, Earth Planets Space 63 (2011) 377. https://doi.org/10.5047/eps.2011.03.001.

[37] B. W. Reinisch, & X. Huang, “Automatic calculation of electron density profiles from digital ionograms 3. Processing of bottomside ionograms”, Radio Science 18 (1983) 477. https://doi.org/10.1029/RS018i003p00477.

[38] I. A. Galkin, G. M. Khmyrov, B. W. Reinisch & J. McElroy, “The SAOXML 5: New Format for Ionogram-Derived Data”, AIP Conference Proceedings 974 (2008) 160. https://doi.org/10.1063/1.2885025.

[39] X. Huang & B. W. Reinisch, “Vertical electron density profiles from the digisonde network”, Advances in Space Research 18 (1996) 121. https://doi.org/10.1016/0273-1177(95)00912-4.

[40] R. Ma, J. Xu, W. Wang & W. Yuan, “Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices”, Journal of Geophysical Research: Space Physics 114 (2009) A10303. https://doi.org/10.1029/2009JA014353.

[41] B. J. Adekoya & B. O. Adebesin, “Hemispheric, seasonal and latitudinal dependence of storm-time ionosphere during low solar activity period”, Advances in Space Research 54 (2014) 2184. https://doi.org/10.1016/j.asr.2014.08.013.

[42] B. O. Adebesin, J. O. Adeniyi, I. A. Adimula, S. J. Adebiyi, S. O. Ikubanni, O. A. Oladipo & A. O. Olawepo, “Pattern of ionisation gradient, solar quiet magnetic element, and F2-layer bottomside thickness parameter at African equatorial location”, Radio Science 54 (2019) 415. https://doi.org/10.1029/2018RS006742.

[43] B. O. Adebesin, J. O. Adeniyi, I. A. Adimula, S. J. Adebiyi, S. O. Ikubanni & B. J. Adekoya, “Current Understanding of the Equatorial E B Drift velocities in the African Sector: A Short Review” Journal of the Nigerian Society of Physical Science 4 (2022) 54. https://journal.nsps.org.ng/index.php/jnsps/article/view/327.

[44] H. Le, L. Liu, X. Yue & W. Wan, “The Mid-latitude F2 layer during solar eclipses: observations and modelling”, Journal of Geophysical Research 113 (2008) A08309. http://dx.doi.org/10.1029/2007JA013012.

[45] S. M. Radicella & J. O. Adeniyi, “Equatorial ionospheric electron density below the F2 peak”, Radio Science 34 (1999) 1153. https://doi.org/10.1029/1999RS900071.

[46] G. W. Pr¨oss, “Ionospheric F region storms”, in Handbook of Atmospheric Electrodynamics, CRCPress, 1995, pp. 195–248. https://www.taylorfrancis.com/chapters/edit/10.1201/9780203713297-8/ionospheric-region-storms-gerd-pr%C3%B6lss.

[47] H. Rishbeth, “How the thermospheric circulation affects the ionospheric F2-layer”, Journal of Atmospheric and Sola-Terrestrial Physics 60 (1998) 1385. https://doi.org/10.1016/S1364-6826(98)00062-5.

[48] M. J. Buonsantos, “Ionospheric Storms – A review”, Space Science Reviews 88 (1999) 563. https://doi.org/10.1023/A:1005107532631.

[49] J. S. Shim, M. Kuznetsova, L. Rastatter, M. Hesse, D. Bilitza, M. Butala, M. Codrescu, B. Emery, B. Foster, T. Fuller-Rowell, J. Huba, A. J. Mannucci, X. Pi, A. Ridley, L. Scherliess, R. W. Schunk, P. Stephens, D. C. Thompson, L. Zhu, D. Anderson, J. L. Chau, J. J. Sojka & B. Rideout, “CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground-based observations”, Space Weather 9 (2011) S12003. https://doi.org/10.1029/2011SW000727.

An orthographical map of the region covered, circumstances, and observation stations during the 20 March 2015 total solar eclipse. The faint blue lines indicate the area where the partial solar eclipse is seen and the thick blue lines is of the eclipse’s maximum magnitude. The Circumstances at Greatest Eclipse: 09:45:39.2 UT, Latitude 64?25.9’N; Longitude 06?38.8’W; Width 462.6 km; Sun Altitude 18.5? ; Sun Azimuth 135.0? ; Duration is 02m46.9s. More details of its path can be seen via NASA (Total solar eclipse of 20 March 2015 https://eclipse.gsfc.nasa.gov/).

Published

2025-05-01

How to Cite

Pattern and variation of electron ionisation gradient as related to the plasma distribution mechanisms during the total solar eclipse of March 20, 2015. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2209. https://doi.org/10.46481/jnsps.2025.2209

Issue

Section

Physics & Astronomy

How to Cite

Pattern and variation of electron ionisation gradient as related to the plasma distribution mechanisms during the total solar eclipse of March 20, 2015. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2209. https://doi.org/10.46481/jnsps.2025.2209