Current Understanding of the Equatorial E x B Drift velocities in the African Sector: A Short Review


  • B. O. Adebesin Department of Physical Sciences, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria.
  • J. O. Adeniyi Department of Physical Sciences, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria.
  • I. A. Adimula Department of Physics, University of Ilorin, Ilorin, Nigeria
  • S. J. Adebiyi Department of Physical Sciences, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria.
  • S. O. Ikubanni Department of Physical Sciences, Landmark University, P.M.B 1001, Omu-Aran, Kwara State, Nigeria.
  • B. J. Adekoya Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria


Vertical E x B Drift, Pre-reversal enhancement, Plasma, Ionosphere, Equatorial region


A short review of the pattern and morphology of the equatorial plasma drift velocities, particularly during the evening-time Pre-reversal enhancement (PRE) period in the African region had been presented. The seasonal PRE peak values across some locations in the West-African region were considered and compared with other sectors of the world. While most plasma drift observations in the African region were calculated from ionosonde measurements, the observations from other sectors involved direct measurement from satellite and the Incoherent Scatter Radar (ISR) observations. The importance of the PRE in ionospheric electrodynamics was highlighted, the better in the use of either the virtual or real heights of the F-layer in inferring vertical drift velocities were enumerated, revealing the strengths and weakness of each method. The general observations revealed that PRE peak magnitude is commonly weaker in the African region in comparison with the American/Peruvian and Indian sectors, seasonal and solar activity dependent, and could be higher during either magnetic quiet or disturbed activity than when both magnetic activity conditions are combined. The first work to present a regional PRE model around the African equatorial ionization anomaly region (Adebesin et al model) was mentioned. The relevance of the E × B drift in quantifying the daytime equatorial electrojet (EEJ) current was also discussed.


C. R. Martinis, M. J. Mendillo & J. Aarons, “Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms”, J. Geophys. Res. 110 (2005) 7306. DOI:

J. Park, M. Noja, C. Stolle, & H. Luhr, “The ionospheric bubble index deduced from magnetic field and plasma observations onboard swarm”, Earth, Planets and Space 65 (2013) 1333. DOI:

C. S. Huang, de la Beaujardiere, O., P. A. Roddy, D. E. Hunton, J. Y. Liu, & S. P. Chen, “Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008-2012)”, Journal of Geo-physical Research: Space Physics 119 (2014) 1186. DOI:

D. Okoh, B. Rabiu, K. Shiokawa, Y. Otsuka, B. Segun, E. Falayi, S. Onwuneme, R. Kaka, “First study on the occurrence frequency of equatorial plasma bubbles over West Africa using an all-sky airglow imager and GNSS receivers”, Journal of Geophysical Research: Space Physics 122 (2017) 12430. DOI:

B. J. Adekoya, V. U. Chukwuma, & B. W. Reinisch, “Ionospheric vertical plasma drift and electron density response during total solar eclipses at equatorial/low latitude”, Journal of Geophysical Research - Space Physics 120 (2015) 8066. DOI:

D. N. Anderson, A. Anghel, K. Yumoto, M. Ishitsuka, & E. Kudeki, “Estimating Daytime, Vertical E x B Drift velocities in the Equatorial F region Using Ground-based Magnetometer Observations”, GRL, 29(2002), doi: 10.1029/ 2001GL014562. DOI:

V. C. Sreeja, V. Devasia, Sudha Ravindran, & T. K. Pant, “Observational evidence for the plausible linkage of Equatorial Electrojet (EEJ) electric field variations with the post sunset F-region electrodynamics”, Ann. Geophys. 27 (2009) 4229. DOI:

J. T. Uemoto, Maruyama, S. Saito, M. Ishii and R. Yushimura, “Relationship between pre-sunset electrojet strength, PRE and ESF onset”, Ann Geophys. 28 (2010) 449. DOI:

L. Liu, J. Yang, H. Le, Y. Chen, W. Wan, & C. C. Lee, “Comparative study of the equatorial ionosphere over Jicamarca during recent two solar minima”, J. Geophys. Res. 117 (2012) A01315, doi: 10.1029/2011JA017215. DOI:

O. S. Oyekola, & C. O. Oluwafemi, “Solar and geomagnetic trends of equatorial evening and nighttime F region vertical ion drift” J. Geophys. Res. 113 (2008) A12318. DOI:

O. S. Oyekola & L. B. Kolawole, “Equatorial vertical E x B drift velocities inferred from ionosonde measurements over Ouagadougou and the IRI-2007 vertical ion drift model”, Adv. Space Res. 46 (2010) 604. DOI:

J. O. Adeniyi, B. O. Adebesin, I. A. Adimula O. A. Oladipo, A. O. Olawepo, S. O. Ikubanni, & B. W. Reinisch, “Comparison between African Equatorial Station Ground-based inferred vertical E x B drift, Jicamarca direct measured drift, and IRI model” Advances in Space Research 54 (2014a) 1629. doi:10.1016/j.asr.2014.06.0 14. DOI:

B. O. Adebesin, J. O. Adeniyi I. A. Adimula, & B. W. Reinisch, “Low latitude Night-time Ionospheric vertical E x B drifts at African Region. Advances in Space Research. 52 (2013a), 2226. doi: 10.1016/j.asr.2013.09.033. DOI:

B. O. Adebesin, A. B. Rabiu, J. O. Adeniyi, & C. Amory-Mazaudier, “Nighttime morphology of vertical plasma drifts at Ouagadougou during different seasons and phases of sunspot cycles 20-22”, J. Geophys. Res. Space Physics 120 (2015a) 10020, doi:10.1002/2015JA021737. DOI:

B. O. Adebesin, J. O. Adeniyi, I. A. Adimula O. A. Oladipo A.O. Olawepo & B. W. Reinisch, “Comparative Analysis of Nocturnal Vertical Plasma Drift velocities inferred from Ground based ionosonde measurements of hmF2 and h’F”, Journal of Atmospheric and Solar-Terrestrial Physics. 122 (2015b) 97. doi:10.1016/j.jastp.2014.11.0 07. DOI:

L. Scherliess & B. G. Fejer, “Radar and satellite global equatorial F-region vertical drift model”, J. Geophys. Res. 104 (1999) 6829. DOI:

I. S. Batista, R. de Medeiros, M. Abdu, J. de Souza, G. Bailey, & E. de Paula, “Equatorial ionospheric vertical plasma drift model over the Brazilian region”, J. Geophys. Res. 101 (1996) 10887. DOI:

B. G. Fejer, J. W. Jesen & S. Su, “Quiet time equatorial F-region vertical plasma drift model derived from ROCSAT-1 observations”, J. Geophys. Res. 113 (2008) A05304. DOI:

H. Kil, R. A. Heelis, L .J. Paxton, S.J. Oh, “Formation of a plasma depletion shell in the equatorial ionosphere” J. Geophys. Res. 114 (2009) 1. DOI:

H. Luhr, M. Rother, K. Hausler, P. Alken, S. Maus, “The influence of non-migrating tides on the longitudinal variation of the equatorial electrojet”, J. Geophys. Res. 113 (2008) A08313. 10.1029/2008JA013064 DOI:

B. W. Reinisch, & I. A. Galkin, “Global Ionospheric Radio Observatory (GIRO)”, Earth Planets Space. 63 (2011) 377. doi:10.5047/eps.2011.03.001. DOI:

O. K. Obrou, D. Bilitza, J. O. Adeniyi, S. M. Radicella, “Equatorial F2-layer peak height and correlation with vertical ion drift and M(3000)F2”, Adv. Space Res. 31 (2003) 513. DOI:

B. O. Adebesin, J. O. Adeniyi, I. A. Adimula, B. W. Reinisch, “Equatorial vertical plasma drift velocities and electron densities inferred from ground-based ionosonde measurements during low solar activity”, J. Atmos. Sol. Terr. Phys. 97 (2013b) 58. DOI:

J. O. Adeniyi, I. A. Adimula, B. O. Adebesin, B.W. Reinisch, O. A. Oladipo, A. O. Olawepo, K. Yumoto, “Quantifying the EEJ current with Ground-based ionosonde inferred vertical ExB drifts in the morning hours over Ilorin, West Africa”, Acta Geophys. 62 (2015b) 656. DOI:

F. Bertoni, I. S. Batista, M. A. Abdu, B. W. Reinisch, & E. A. Kherani, “A comparison of Ionospheric vertical drift velocities measured by Digisonde and Incoherent Scater Radar at the magnetic equator”, J. Atmosph. Solar Terr. Phys. 68 (2006) 669. DOI:

J. A. Bittencourt, M. A. Abdu, “A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region”, J. Geophys. Res. 86 (1981) 2451. DOI:

B. O. Adebesin, “The 300km threshold value for vertical drifts inferred from F-region heights: Past observations, Present developments, and future works. NRIAG”, Journal of Astronomy and Geophysics 5 (2016) 30. doi: 10.1016/j.nrjag.2016.04.001. DOI:

B. O. Adebesin, A. B. Rabiu, O. S. Bolaji, J. O. Adeniyi, & C. Amory-Mazaudier, “Ionospheric Climatology at Africa EIA trough stations during Descending Phase of Sunspot Cycle 22”, Journal of Atmos. and Solar-Terrestrial Physics 172 (2018a) 83, doi:10.1016/j.jastp. 2018.03.009. DOI:

F. O. Grodji, V. Doumbia, K. Boka, C. Amory-Mazaudier, Y. Cohen, & R. Fleury, “Estimating some parameters of the equatorial ionosphere electrodynamics from ionosonde data in West Africa”, Adv. Space Res. 59 (2017) 311. DOI:

O. S. Oyekola, “Equatorial F-region vertical ion drifts during quiet solar maximum”, Advances in Space Research. 43 (2009) 1950. DOI:

A. V. Mikhailov, V. H. Depuev, & A. H. Depueva, “Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiet-time F2-layer disturbances”, Ann. Geophys. 25 (2007) 483. DOI:

C. C. Lee, J. Y. Liu, B. W. Reinisch, W.S. Chen, & F. D. Chu, “The effects of the pre-reversal drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum”, Annales Geophysicae 23 (2005) 745. DOI:

K. B. Ramesh & J. H. Sastri, “Solar cycle and seasonal variations in F region vertical drifts over Kodaikanal, India”, Ann. Geophys. 13 (1995) 633. DOI:

B. G. Fejer, E. R. de Paula, S. A. Gonzales, & R. F. Woodman, “Average vertical and zonal F-region plasma drifts over Jicamarca”, J. Geophys. Res. 96 (1991) 13901. DOI:

B. O. Adebesin, J. O. Adeniyi, O. A. Oladipo, A. O. Olawepo, A. O. & I. A. Adimula, “Quantitative Characteristics of Equatorial Ionization Gradient Above 150 km at Low Solar Activity”, Radio Science 53 (2018b) 948. DOI:

D. E. Anderson, Araujo-Pradere & L. Scherliess, “Comparing daytime, equatorial E x B drift velocities and TOPEX/TEC observations associated with the 4-cell, non-migrating tidal structure”, Ann. Geophys. 27 (2009) 2861. DOI:

A. P. Eduardo, N. D. Anderson, M. Fedrizzi & R. Stoneback, “Quantifying the daytime, equatorial E x B drift velocities at the boundaries of the 4-cell tidal structure using C/NOFS’ CINDI observations”, The International Beacon Satellite Symposium BSS2010 P. Doherty, M. Hernandez-Pajares, J.M. Juan, J. Sanz & A. Aragon-Angel (Eds) Campus Nord UPC, Barcelona. (2010)

I. A. Adimula, A. B. Rabiu, Y. Yumoto, & the MAGDAS Group, “Geomagnetic field variations from some equatorial electrojet stations”, Sun and Geosphere 1819-0839 6 (2011) 39.

O. S. Bolaji, A. B. Rabiu, I. A. Adimula, J. O. Adeniyi & K. Yumoto, “Inter-hemispheric Trans- equatorial Field-aligned Currents Deduced from MAGDAS at Equatorial Zone”, Space Research Journal 4 (2011) 12,.DOI:10.3923/srj.2011.12.22. DOI:

D. Anderson, A. Anghel, J. L. Chau, & O. Veliz, “Daytime vertical E x B drift velocities inferred from ground-based magnetometer observations at low latitudes”, Space Weather 2 (2004) S11001, doi: 10.1029/2004 SW000095. DOI:



How to Cite

Adebesin, B. O., Adeniyi, J. O. ., Adimula, I. A. ., Adebiyi, S. J. ., Ikubanni, S. O. ., & Adekoya, B. J. (2022). Current Understanding of the Equatorial E x B Drift velocities in the African Sector: A Short Review . Journal of the Nigerian Society of Physical Sciences, 4(1), 54–58.



Review Article