Mathematical advection-diffusion model of primary and secondary pollutants emitted from the point source with mesoscale wind and removal mechanisms

Authors

  • Vanita R. Raikar Department of Mathematics, Sai Vidya Institute of Technology, Bengaluru 560064, India; Visvesvaraya Technological University, Belagavi 590018, India
  • Lakshminarayanachari K Department of Mathematics, Sai Vidya Institute of Technology, Bengaluru 560064, India; Visvesvaraya Technological University, Belagavi 590018, India
  • K. Bharathi Visvesvaraya Technological University, Belagavi 590018, India; Department of Mathematics, University BDT College of Engineering, Davangere,577004, India
  • C. Bhaskar Department of Mathematics, Sai Vidya Institute of Technology, Bengaluru 560064, India; Visvesvaraya Technological University, Belagavi 590018, India

Keywords:

Mesoscale winds, Eddy diffusivity, Removal mechanism, Gravitational settling velocity, Leakage velocity and Finite difference technique

Abstract

A numerical model is represented to study the effect of gravitational settling velocity and leakage velocity on the concentration distribution of primary and secondary pollutants emitted from the point source in an urban area with mesoscale wind. The point source characterizes pollutants emission from industrial process stacks and fuel combustion facility stacks. The article deals with the dispersion of primary and secondary pollutants emitted from point source with mesoscale wind along with large scale wind. The Crank-Nicolson's implicit finite difference method is adopted for solving partial differential equations of contaminant with wind velocity and eddy diffusivity profiles. Pollutants concentration been analysed for various removal mechanisms under stable as well as neutral condition of atmosphere. The results reveal decrease in the concentration of primary and secondary air contaminant by increasing the various removal mechanisms. In neutral condition the magnitude of concentration is less for the pollutants as compared with stable condition of atmosphere.

Dimensions

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani & F. Rizzolio, ‘‘The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine’’, Molecules 25 (2019) 112. https://doi.org/10.3390/molecules25010112.

I. Khan, K. Saeed & I. Khan, ‘‘Nanoparticles: Properties, applications and toxicities’’, Arab. J. Chem. 12 (2019) 908. https://doi.org/10.1016/j.arabjc.2017.05.011.

N. Baig, I. Kammakakam & W. Falath, ‘‘Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges’’, Mater. Adv. 2 (2021) 1821. https://doi.org/10.1039/D0MA00807A.

D. Li, Q. Lian, T. Du, R. Ma, H. Liu, Q. Liang, Y. Han, G. Mi, O. Peng, G. Zhang, W. Peng, B. Xu, X. Lu, K. Liu, J. Yin, Z. Ren, G. Li & C. Cheng, ‘‘Co-adsorbed self-assembled monolayer enables high performance perovskite and organic solar cells’’, Nat. Commun. 15 (2024) 7605. https://doi.org/10.1038/s41467-024-51760-5.

V. Lotito & T. Zambelli, ‘‘Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists’’, Adv. Colloid Interface Sci. 246 (2017) 217. https://doi.org/10.1016/j.cis.2017.04.003.

S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. RoghaniMamaqani, M. Tahriri, L. Tayebi & M. Hamblin, ‘‘Stimulus-responsive polymeric nanogels as smart drug delivery systems’’, Acta Biomater. 92 (2019) 1. https://doi.org/10.1016/j.actbio.2019.05.018.

M. Behrens, ‘‘Coprecipitation: An excellent tool for the synthesis of supported metal catalysts – From the understanding of the well known recipes to new materials’’, Catal. Today 246 (2015) 46. https://doi.org/10.1016/j.cattod.2014.07.050.

K. Jayaraman, M. V. Kok & I. Gokalp, ‘‘Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends’’, Renew. Energy 101 (2017) 293.https://doi.org/10.1016/j.renene.2016.08.072.

X. Zhang, L. Zhou, X. Tu & F. Hu, ‘‘Hydrothermal synthesis of ZnO Crystals: Diverse morphologies and characterization of the photocatalytic properties’’, Polyhedron 246 (2023) 116668. https://doi.org/10.1016/j.poly.2023.116668.

H. Udayagiri, S. S. Sana, L. K. Dogiparthi, R. Vadde, R. S. Varma, J. R. Koduru, G. S. Ghodake, A. R. Somala, V. K. Naidu Boya, S. Kim & R. R. Karri, ‘‘Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity’’, Sci. Rep. 14 (2024) 19714. https://doi.org/10.1038/s41598-024-69044-9.

A. de Castro Lopes, D. M. de Sousa, G. M. Chaer, F. dos Reis Junior, W. J. Goedert & I. de Carvalho Mendes, ‘‘Interpretation of Microbial Soil Indicators as a Function of Crop Yield and Organic Carbon’’, Soil Sci. Soc. Am. J. 77 (2013) 461. https://doi.org/10.2136/sssaj2012.0191.

N. Asif, M. Amir & T. Fatma, ‘‘Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles’’, Bioprocess Biosyst. Eng. 46 (2023) 1377. https://doi.org/10.1007/s00449-023-02886-1.

A. Lipovsky, Y. Nitzan, A. Gedanken & R. Lubart, ‘‘Antifungal activity of ZnO nanoparticles–the role of ROS mediated cell injury.’’, Nanotechnology 22 (2011) 105101. https://doi.org/10.1088/0957-4484/22/10/105101.

M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung & G. Katona, ‘‘Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts’’, Mater. Sci. Semicond. Process. 39 (2015) 23. https://doi.org/10.1016/j.mssp.2015.04.038.

J. Nandhini, E. Karthikeyan & S. Rajeshkumar, ‘‘Green synthesis of zinc oxide nanoparticles: Eco-friendly advancements for biomedical marvels’’, Resour. Chem. Mater. 5 (2024) 1. https://doi.org/10.1016/j.recm.2024.05.001.

H. Perumalsamy, S. R. Balusamy, J. Sukweenadhi, S. Nag, D. MubarakAli, M. El-Agamy Farh, H. Vijay & S. Rahimi, ‘‘A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications’’, J. Nanobiotechnology, 22 (2024) 71. https://doi.org/10.1186/s12951-024-02332-8.

Y. Gao, D. Xu, D. Ren, K. Zeng & X. Wu, ‘‘Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study’’, LWT 126 (2020) 109297. https://doi.org/10.1016/j.lwt.2020.109297.

I. S. Dassekpo, E. G. Achigan-Dako, B. Tenté, C. S. Houssou & A. Ahanchédé, ‘‘Valuation of Newbouldia laevis and its endogenous conservation in Benin (West Africa)’’, J. Herb. Med. 23 (2020) 100388. https://doi.org/10.1016/j.hermed.2020.100388.

J. B. Habu & B. O. Ibeh, ‘‘In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract’’, Biol. Res. 48 (2015) 16. https://doi.org/10.1186/s40659-015-0007-x.

C. Umeyor, E. Anaka, F. Kenechukwu, C. Agbo & A. Attama, ‘‘Development, in vitro and in vivo evaluations of novel lipid drug delivery system of Newbouldia laevis (P. Beauv.)’’, Nanobiomedicine 3 (2016) 1. https://doi.org/10.1177/1849543516673445.

T.G.Atere, O.A.Akinloye, R.N.Ugbaja, D.A.Ojo&G.Dealtry, ‘‘Invitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf’’, Food Sci. Hum. Wellness 7 (2018) 266. https://doi.org/10.1016/j.fshw.2018.09.004.

D. C. Bouttier-Figueroa, M. Cortez-Valadez, M. Flores-Acosta & R. E. Robles-Zepeda, ‘‘GreenSynthesisof ZincOxide NanoparticlesUsingPlant Extracts and Their Antimicrobial Activity’’, Bionanoscience 14 (2024) 3385. https://doi.org/10.1007/s12668-024-01471-4.

D. Sarpong, D. Boakye, G. Ofosu & D. Botchie, ‘‘The three pointers of research and development (R&D) for growth-boosting sustainable innovation system’’, Technovation 122 (2023) 102581. https://doi.org/10.1016/j.technovation.2022.102581.

Y. A. Selim, M. A. Azb, I. Ragab & M. H. M. A. El-azim, ‘‘Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities’’, Sci. Rep. (2022) 1. https://doi.org/10.1038/s41598-020-60541-1.

L. He, Y. Liu, A. Mustapha & M. Lin, ‘‘Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum’’, Microbiol. Res. 166 (2011) 207. https://doi.org/10.1016/j.micres.2010.03.003.

G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao & X. Su, ‘‘Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4 - Nitrophenol Reduction’’, ACS Appl. Mater. Interfaces 9 (2017) 18207. https://doi.org/10.1021/acsami.7b03120.

N. Jayarambabu, B. S. Kumari, K. V. Rao & Y. T. Prabhu, ‘‘Germination and Growth Characteristics of Mungbean Seeds (Vigna radiata L.) affected by Synthesized Zinc Oxide Nanoparticles’’, Int. J. Curr. Eng. Technol. 4 (2014) 3412. https://inpressco.com/wp-content/uploads/2014/09/Paper593411-3416.pdf.

K. M. Ezealisiji, S.-N. Xavier, B. Maduelosi & N. Nwachukwu, ‘‘Green synthesis of zinc oxide nanoparticles using Solanum torvum ( L ) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles – hydrogel composite in Wistar albino rats’’, Int. Nano Lett. 9 (2019) 99. https://doi.org/10.1007/s40089-018-0263-1.

M. S. Geetha, H. Nagabhushana & H. N. Shivananjaiah, ‘‘Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent’’, J. Sci. Adv. Mater. Devices 1 (2016) 301. https://doi.org/10.1016/j.jsamd.2016.06.015.

S. Faisal, H. Jan, S.Ali Shah, S. Shah, A. Khan, M. T. Akbar, M. Rizwan, F.Jan, W. N. Akhtar, A. Khattak & S. Syed, ‘‘Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans : Their Characterizations and Biological and Environmental Applications’’, Am. Chem. Soc. Omega 6 (2021) 9709. https://doi.org/10.1021/acsomega.1c00310.

S. Saravanan & D. R. S. Dubey, ‘‘Synthesis of SiO2 Nanoparticles by SolGel Method and Their Optical and Structural Properties’’, Rom. J. Inf. Sci. Technol. 23 (2020) 105. https://www.romjist.ro/full-texts/paper641.pdf.

M. Dalal, A. Das, D. Das, R. S. Ningthoujam & P. K. Chakrabarti, ‘‘Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multiwalled carbon nanotubes’’, J. Magn. Magn. Mater. 460 (2018) 12. https://doi.org/10.1016/J.JMMM.2018.03.048.

S. G. Bekele, D. D. Ganta & M. Endashaw, ‘‘Green synthesis and characterization of zinc oxide nanoparticles using Monoon longifolium leave extract for biological applications’’, Discov. Chem. 1 (2024) 5. https://doi.org/10.1007/s44371-024-00007-9.

S. M. Alshahrani, E.-S. Khafagy, Y. Riadi, A. Al Saqr, M. M. Alfadhel & W. A. H. Hegazy, ‘‘Amphotericin B-PEG Conjugates of ZnO Nanoparticles: Enhancement Antifungal Activity with Minimal Toxicity.’’, Pharmaceutics 14 (2022) 1646. https://doi.org/10.3390/pharmaceutics14081646.

C. R. Mendes, G. Dilarri, C. F. Forsan, V. de Moraes Ruy Sapata, P. R. M. Lopes, P. Bueno de Moraes, R. N. Montagnolli, H. Ferreira & Ederio Dino Bidoia , ‘‘Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens’’, Sci. Rep. 12 (2022) 2658. https://doi.org/10.1038/s41598-022-06657-y.

A. Garjani, ‘‘Pharmaceutical sciences’’, Pharm. Sci. 22 (2016) 1. https://doi.org/10.15171/PS.2016.01.

A. N. Chishti, L. Ni, F. Guo, X. Lin, Y. Liu, H. Wu, M. Chen, G. Wang Diao, ‘‘Magnetite-Silica core-shell nanocomposites decorated with silver nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of methylene blue dye in the water’’, J.Environ.Chem.Eng.9(2021) 104948. https://doi.org/10.1016/j.jece.2020.104948.

M.Nasrollahzadeh, M.Atarod, B.Jaleh&M.Gandomirouzbahani, ‘‘Insitu green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue’’, Ceram. Int. 42 (2016) 8587. https://doi.org/10.1016/j.ceramint.2016.02.088.

J. Chen, Z. Wu, J. Zheng, Y. Shi, L. Xie, F. Yang, Y. Wang, Z. Zhang, ‘‘Novel solid-state hydrolysis kinetics of NaBH4 for stable and highcapacity on-line hydrogen production’’, Chem. Eng. J. 486 (2024) 150062. https://doi.org/10.1016/j.cej.2024.150062.

G. Zhou, Z. He & X. Dong, ‘‘Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2’’, Catal. Letters 151 (2021) 1091. https://doi.org/10.1007/s10562-020-03379-6.

Published

2025-01-13

How to Cite

Mathematical advection-diffusion model of primary and secondary pollutants emitted from the point source with mesoscale wind and removal mechanisms. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2337. https://doi.org/10.46481/jnsps.2025.2337

Issue

Section

Mathematics & Statistics

How to Cite

Mathematical advection-diffusion model of primary and secondary pollutants emitted from the point source with mesoscale wind and removal mechanisms. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2337. https://doi.org/10.46481/jnsps.2025.2337