Influence of Precursor Temperature on Bi Doped ZnSe Material via Electrochemical Deposition Technique for Photovoltaic Application


  • Imosobomeh L. Ikhioya Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Eli Danladi Department of Physics, Faculty of Science, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
  • Okoli D. Nnanyere Department of Physics and Industrial Physics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
  • Abdulazeez O. Salawu Department of Computer Science, Nile University of Nigeria


ZnSe, Doping, Precursor temperature, Photovoltanic, Electrochemical deposition


In this study, Bismuth (Bi) doped ZnSe thin films were deposited on conducting glass substrates by electrochemical deposition technique and the influence of precursor temperature (room, 50, 55, 60 oC) on their optical and structural properties were systematically studied using the combined effect of X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and UV-VIS spectrophotometer. The XRD patterns show a face-centred cubic structure indexed with peaks at (220), (221) and (300). The grain size was in the range of 3.24056 to 4.60481 nm with a lattice constant of 7.189Å. The material deposited at room, 500C, 550C, and 600C reveals agglomeration of particle on the surface of the substrate indicating uniform deposition. The optical spectra show that at different temperature (say room, 50oC, 55oC and 60oC), the absorbance and reflectance of BiZnSe thin films decreases with increase in wavelength of the incident radiation while the transmittance shows direct proportionality with the increase in wavelength. The bandgap demonstrated an increase in the range 1.75-2.25 eV with increase in temperature.


S. J. Pearton & F. Ren, “Advances in ZnO-based materials for light emitting diodes”, Current Opinion in Chemical Engineering 3 (2014) 51. DOI:

H.Dae-Kue, O. Min-Suk, L. Jae-Hong & P. Seong-Ju, “ZnOthinfilms and light-emitting diodes”, Journal of Physics D: Applied Physics 40 (2007) R387.

K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto & H. Koinuma, “Large magneto-optical effect in an oxide diluted magnetic semiconductor Zn1-xCoxO”, Applied Physics Letters 78, (2001) 2700. DOI:

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo & P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science 292 (2001) 1897. DOI:

K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West & D. Coleman, “Room temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition”, Advanced Materials 14 (2002) 1221. DOI:<1221::AID-ADMA1221>3.0.CO;2-1

L.Wang,Y.Kang,X.Liu,S.Zhang, W.Huang&S.Wang,“ZnOnanorod gas sensor for ethanol detection”, Sensors and Actuators B: Chemical 162 (2012) 237. DOI:

P. H. Yeh, Z. Li & Z. L. Wang, “Schottky-gated probe-free ZnO nanowire biosensor”, Advanced Materials 21 (2009) 4975. DOI:

J. Huang, Z. Yin &Q.Zheng, “Applications of ZnO in organic and hybrid solar cells, Energy and Environmental Science 4 (2001) 3861. DOI:

B. Weintraub, Y. G. Wei & Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells”, Angewandte Chemie 48 (2009) 8981. DOI:

A. Kennedy, V. S. Kumar &K.P.Raj, “Influence of substrate temperature on structural, morphological, optical and electrical properties of Bi-doped MnInS4 thinfilmsprepared bynebuliser spray pyrolysis technique”, Journal of Physics and Chemistry of Solids 110 (2017) 100. DOI:

R. Inov & D. Desheva, “Preparation and characterization of amorphous SeTe/CdSe superlattices and their constituent thin layers”, Thin Solid Films 213 (1992) 230. DOI:

R.P.Raffaelle, H. Forsell, T. Potdevis, R. Fridefeld, J. G. Mortovani, S. G. Bailey, S.M. Hubbard, E.M. Gordon & A.F. Hepp, “Elecrodeposited CdS on CIS pn junction”, Solar Energy Materials and Solar Cells 57 (1999) 167. DOI:

K. Subbaramaiah & V. S. Raja, “Preparation and characterization of all spray-deposited p ? Culn(S0,5Se0,5)2/n ? CdZnS : In thin film solar cells” Solal Energy Materials and Solar Cells 32 (1994) 1. DOI:

S. Tec-Yam, R. Potino & A. I. Oliva, “Chemical bath deposition of CdS f ilms on different substrate orientations”, Current Applied Physics 11 (2011) 914. DOI:

N. B. Singh, C. H. Su, F. S. Choa, B. Arnold, P. Gill, C. Su, I. Emge &R. Sood, “Effect of Doping on the Electrical Characteristics of ZnSe”, Crystals 10 (2020) 551. DOI:

M. M. Rahman, C. Das, M. M. Rahaman, K. M. A. Hussain & S. Choudhury, “Effect of thickness on structural, morphological and optical properties of copper (Cu) doped zinc selenide (ZnSe) thin filmd by vacuum evaporation method”, Bangladesh Academy of Science 43 (2019) 159. DOI:

K. Yadav &N.Jaggi, “Effect of Ag doping on structural and optical properties of ZnSe nanophosphors”, Materials Science in Semiconductor Processing 30 (2015) 376. DOI:

F. Qiao, R. Kang, Q. Liang, Y. Cai, J. Bian & X. Hou, “Tunability in the Optical and Electronic Properties of ZnSe Microspheres via Ag and Mn Doping”, ACS Omega 4 (2019) 12271. DOI:

M.Mrad,B.Chouchene&T.B.Chaabane“EffectsofZincPrecursor, Basicity and Temperature on the Aqueous Synthesis of ZnO Nanocrystals” South African Journal of Chemistry 71 (2018) 103. DOI:

K. Yadav Y. Dwivedi & N. Jaggi, “Structural and optical properties of Ni doped ZnSe nanoparticles”, Journal of Luminnescence 158 (2015) 181. DOI:

Y. Wang, X. Liang, E. Liu, X. Hu & J. Fan, “Incorporation of lanthanide (Eu3+) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study”, Nanotechnology 26 (2015) 375601. DOI:

G. Colibaba, M. Caraman, I. Evtodiev, S. Evtodiev, E. Goncearenco, D. Nedeoglo & N. Nedeoglo, “Influence of annealing medium on photoluminescence and optical properties of ZnSe:Cr crystals. Journal of Luminescence 145 (2014) 237. DOI:

G. M. Lohar, S. K. Shinde, M. C. Rath & V. J. Fulari, “Structural, optical, photoluminescence, electrochemical, and photoelectrochemical properties of Fe doped ZnSe hexagonal nanorods”, Materials Science in Semiconductor Processing 26 (2014) 548. DOI:

G.M.Lohar,S.T.Jadhav, M.V.Takale, R.A.Patil, Y.R.Mab, M.C.Rath & V. J. Fulari, “Photoelectrochemical cell studies of Fe2+ doped ZnSe nanorods using the potentiostatic mode of electrodeposition”, Journal of Colloid Interface Science 458 (2015) 136. DOI:

E. R.A.Moses, D.S.Mary, C.Sanjeeviraja & M. Jayachandran, “Growth of ZnSe thin layers on different substrates and their structural consequences with bath temperature”, Physica B 405 (2010) 485. DOI:

H. Metina, S. Durmus, S. Erat & M. Ari, “Characterization of chemically deposited ZnSe/SnO2/glass films: influence of annealing in Ar atmosphere on physical properties”, Applied Surface Science 257 (2011) 6474. DOI:

J. Tauc, Amorphous and liquid semiconductors, Plenum press, London & New York (1974). DOI:

N. F. Mott & E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edition Clarendon, Oxford (1979).



How to Cite

Ikhioya, I. L., Danladi, E., Nnanyere, O. D., & Salawu, A. O. (2022). Influence of Precursor Temperature on Bi Doped ZnSe Material via Electrochemical Deposition Technique for Photovoltaic Application. Journal of the Nigerian Society of Physical Sciences, 4(1), 123–129.



Original Research