Non-monochromatic laser assist scattering in thermal environment

Authors

  • Saddam Husain Dhobi Central Department of Physics, Tribhuvan University, Kirtipur 44618, Nepal
  • Kishori Yadav Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur 44700, Nepal
  • Suresh Prasad Gupta Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur 44700, Nepal
  • Jeevan Joyti Nakarmi Central Department of Physics, Tribhuvan University, Kirtipur 44618, Nepal
  • Ajay Kumar Jha Department of Mechanical and Advance Engineering, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Lalitpur 44700, Nepal

Keywords:

Non-monochromatic laser fields, Differential cross section, Thermal environment, Electron-atom interactions, Quantum control

Abstract

This study aims to investigate the differential cross-section (DCS) in a non-monochromatic laser-assisted thermal environment. Building on existing research, which primarily explores electron dynamics and ionization processes without considering thermal effects, this work seeks to bridge this research gap by examining the DCS under non-monochromatic laser fields in a thermal environment. The methodology involves utilizing a vector potential derived by Milosvic to represent non-monochromatic laser fields and applying a semi-classical approximation with the help of Volkov solutions. The S-matrix is then obtained to study the DCS. The developed model was computed to analyze the nature of the DCS. The results indicate that the DCS for photon absorption is higher than for emission due to atomic oscillation/excitation. This causes atom expansion upon absorption and a decrease in field strength during emission. Furthermore, the DCS behavior varies with the phase of the non-monochromatic wave and polarization, with distinct patterns observed for absorption and emission scenarios. The DCS with energy at different rates of absorption and emission exhibits a damping nature. Additionally, the DCS shows oscillatory behavior with separation distance, displaying higher values for absorption and varying with laser phase. The findings provide valuable insights into electron-atom interactions under laser fields in thermal conditions, with implications for quantum thermal machines, photochemistry, proton exchange membrane fuel cells (PEMFC), and more.

Dimensions

[1] A. D. Bandrauk & S. Chelkowski, “Asymmetric electron-nuclear dynamics in two-color laser fields: Laser phase directional control of photofragments in H+2”, AIP Conference Proceedings 525 (2000) 547. https://doi.org/10.1063/1.1595653.

[2] J. Zhang & T. Nakajima, “Coulomb effects in photoionization of H atoms irradiated by intense laser fields”, Physical Review A 75 (2007) 043403. https://doi.org/10.1103/PhysRevA.75.043403.

[3] S. Schnez, E. Lotstedt, U. D. Jentschura & C. H. Keitel, “Laser-assisted¨ bremsstrahlung for circular and linear polarization”, Physical Review A 75 (2007) 053412. https://doi.org/10.1103/PhysRevA.75.053412.

[4] F. Jin, W. Yang, X. Liu, H. Zhang, W. Dong, X. Song & J. Chen, “Control of photoelectron interference dynamics with two-color laser fields”, Physical Review Research 4 (2022) 013140. https://doi.org/10.1103/PhysRevResearch.4.013140.

[5] F. Jin, Y. Tian, J. Chen, Y. Yang, X. Liu, Z.-C. Yan & B. Wang, “Nonsequential double ionization of helium in IR+XUV two-color laser fields: Collision-ionization process”, Physical Review A 93 (2016) 043417. https://doi.org/10.1103/PhysRevA.93.043417.

[6] S. Yu, Y. Wang, X. Lai, Y. Huang, W. Quan & X. Liu, “Coulomb effect on photoelectron momentum distributions in orthogonal two-color laser fields”, Physical Review A 94 (2016) 033418. https://doi.org/10.1103/PhysRevA.94.033418.

[7] M. Richter, M. Kunitski, M. Schoffler, T. Jahnke & L. P. H. Schmidt, “Streaking temporal double-slit interference by an orthogonal two-color laser field”, Physical Review Letters 114 (2015) 143001. https://doi.org/10.1103/PhysRevLett.114.143001.

[8] G. Buica, “Dressing effects in the laser-assisted (e,2e) process in fastelectron–hydrogen-atom collisions in an asymmetric coplanar scattering geometry”, Physical Review A 106 (2022) 022804. https://doi.org/10.1103/PhysRevA.106.022804.

[9] G. Buica, “Comparative study of fast-electron-impact ionization of a hydrogen atom in circularly and linearly polarized laser fields”, Physical Review A 109 (2024) 052808. https://doi.org/10.1103/PhysRevA.109.052808.

[10] S. H. Dhobi, J. J. Nakarmi, K. Yadav, S. P. Gupta & B. Koirala, “Differential cross-section in the presence of a weak laser field for inelastic scattering”, Ukrainian Journal of Physics 67 (2022) 227. https://doi.org/10.15407/ujpe67.4.227.

[11] S. H. Dhobi, J. J. Nakarmi, K. Yadav, S. P. Gupta, B. Koirala & A. K. Shah, “Study of thermodynamics of a thermal electron in scattering”, Heliyon 8 (2022) e12315. http://dx.doi.org/10.1016/j.heliyon.2022.e12315.

[12] S. H. Dhobi, S. P. Gupta, K. Yadav, J. J. Nakarmi & A. K. Jha, “Differential cross-section with Volkov-thermal wave function in Coulomb potential”, Atom Indonesia 50 (2024) 19. http://dx.doi.org/10.55981/aij.2024.1309.

[13] D. B. Milosevic, “Potential scattering in a strong multicolour laser field”, Journal of Physics B: Atomic, Molecular and Optical Physics 29 (1996) 875. https://dx.doi.org/10.1088/0953-4075/29/4/024.

[14] S. Luo, M. Li, H. Xie, P. Zhang, S. Xu, Y. Li, Y. Zhou, P. Lan & P. Lu, “Angular-dependent asymmetries of above-threshold ionization in a twocolor laser field”, Physical Review A 96 (2017) 023417. https://doi.org/10.1103/PhysRevA.96.023417.

[15] F. Ehlotzky, “Atomic phenomena in bichromatic laser fields”, Physics Reports 345 (2001) 175. https://doi.org/10.1016/s0370-1573(00)00100-9.

[16] J. Maurer & U. Keller, “Ionization in intense laser fields beyond the electric dipole approximation: Concepts, methods, achievements and future directions”, Journal of Physics B: Atomic, Molecular and Optical Physics 54 (2021) 094001. https://doi.org/10.1088/1361-6455/abf731.

[17] D. Solovyev, T. Zalialiutdinov & A. Anikin, “Relativistic corrections to the thermal interaction of bound particles,” Physical Review Research 3 (2021) 023102. https://doi.org/10.1103/PhysRevRes.3.023102.

[18] G. Buica, “Inelastic scattering of electrons by metastable hydrogen atoms in a laser field”, Physical Review A 92 (2015) 033421. https://doi.org/10.1103/PhysRevA.92.033421.

[19] B. A. De Harak, B. N. Kim, C. M. Weaver, N. L. S. Martin & M. Siavashpouri, “Effects of polarization direction on laser-assisted free-free scattering”, Plasma Sources Science and Technology 25 (2016) 035021. https://doi.org/10.1088/0953-4075/25/3/035021.

[20] A. Jablonski, F. Salvat & C. J. Powell, ”Comparison of electron elasticscattering cross sections calculated from two commonly used atomic potentials”, Journal of Physical and Chemical Reference Data 33 (2004) 409. https://doi.org/10.1063/1.1595653.

[21] A. Makhoute, H. Agueny, A. Dubois, I. Ajana & A. Taoutioui, “Electronimpact elastic scattering of helium in the presence of a laser field: Nonperturbative approach”, Journal of Physics B: Atomic, Molecular and Optical Physics 49 (2016) 075204. https://doi.org/10.1088/0953-4075/49/7/075204.

[22] I. Ajana, A. Makhoute, D. Khalil & A. Dubois, “The second Born approximation in laser-assisted (e, 2e) collisions in hydrogen”, Journal of Physics B: Atomic, Molecular and Optical Physics 47 (2014) 175001. https://doi.org/10.1088/0953-4075/47/17/175001.

[23] V. K. Pustovalov, “Heating of nanoparticles and their environment by laser radiation and applications”, Nanotechnology and Precision Engineering 7 (2024) 2. https://doi.org/10.1063/10.0022560.

[24] V. P. Zharov, V. Galitovsky & M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis”, Applied Physics Letters 83 (2003) 4897. https://doi.org/10.1063/1.1632546.

[25] R. R. Anderson & J. A. Parrish, “Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation”, Science 220 (1983) 524. https://doi.org/10.1126/science.6836297.

Published

2025-02-01

How to Cite

Non-monochromatic laser assist scattering in thermal environment. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2345. https://doi.org/10.46481/jnsps.2025.2345

Issue

Section

Physics & Astronomy

How to Cite

Non-monochromatic laser assist scattering in thermal environment. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2345. https://doi.org/10.46481/jnsps.2025.2345