Design, synthesis and studies on thermodynamic and biological activities of lanthanide III complexes of hydrazinecarbothioamide ligands

Authors

  • U. B. Amadi Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria
  • M. Ogwuegbu Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria
  • C. K. Enenebeaku Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria
  • G. onyedika Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria

Keywords:

Tetradentate ligands, Lanthanide complexes, biological activity, Molecular docking, Thermodynamic stability

Abstract

New tetradentate ligands, 2-(2-hydroxybenzoyl)hydrazinecarbothioamide, HL1, and 2-(2-mercaptobenzoyl)hydrazinecarbothioamide, HL2, were designed and synthesized from the condensation reactions of salicylic and, thiosalicylic acids with thiosemicarbazide in one pot  without any coupling agent. The ligands were characterized using physical and spectroscopic methods. They formed complexes with Nd (III) and Dy (III) ions. The FTIR results suggest that the ligands exhibit azo-hydrazo tautomerism. The complexes were thermally stable with NdHL1 having a decomposition activation energy, Ea of 54.7 kJmo${}^{-1}$, $\Delta$H value of 47.8 kJmol${}^{-1}$, $\Delta$S value of -23.1 kJmol${}^{-1}$, $\Delta$G value of 237.8 kJmo${}^{-1}$ being the most stable at 530 C. The dysprosium complexes were crystalline, while the~neodymium complexes were~amorphous and produced no peaks in X-ray diffraction spectra. The complexes have the general formula [Ln (HL)${}_{2}$(H${}_{2}$O)${}_{\ m}$(NO${}_{3}$)${}_{\ n}$] (H${}_{2}$O)${}_{\ m}$(NO${}_{3}$)${}_{\ n}$, where m ranged between 0 and 2, while n ranged from 0 to 1. The complexes showed thermal stability beyond 400~ $\circ$C. All the compounds showed significant antimicrobial activities against aspergillus flavus at concentrations of 12.5, 25, and, 50 mg/ml, with the highest activity recorded at 50 mg/ml for DyHL2. DyHL2 complex also showed the highest binding affinity of 5.3 kcal/mol, compared to the binding affinities -1.3, kcal/mol, -1.2, -5.2, 5.1, and -5.0 kcal/mol obtained for HL1, HL2, NdHL1, NdHL1, DyHL1 and NdHL2 respectively from molecular docking studies, indicating inhibitory efficacy against A. \textit{f}lavus. The complexes are potential novel compounds for the development of drugs, photocatalysts, photosensitized materials, and photocells used in organic synthesis, and solar energy conversion devices. 

 

 

Author Biographies

M. Ogwuegbu, Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria

professor 

C. K. Enenebeaku, Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria

professor 

G. onyedika, Department of Chemistry, Federal University of Technology, Owerri, Imo State, Nigeria

senior lecturer

Dimensions

[1] P. W. Seavill & J. D. Wilden, “The preparation and applications of amides using electrosynthesis”, Green Chem. 22 (2020) 7737. https://doi.org/10.1039/D0GC02976A.

[2] X. Zhang, T. X. Cui, X. Zhao, P. Liu & P. Sun, “Electrochemical difunctionalization of Alkenes by a four-component reaction cascade mumm rearrangement: rapid access to functionalized Imides”, Angew. Chem. 59 (2020) 3465. https://doi.org/10.1002/anie.201913332.

[3] D. C¸ anakc¸i, “Thermal stability, degradation kinetic and structural characterization of novel aromatic amide compounds”, Journal of Molecular Structure 1205 (2020) 127645. https://doi.org/10.1016/j.molstruc.2019.127645.

[4] U. B. Amadi, M. O. C. Ogwuegbu, C. K. Enenebeaku & G. O. Onyedika, “A Review on synthesis, lanthanide complexes and biological activites of hydrazone derivatives of hydrazinecarbothioamides”, International Research Journal of Pure and applied chemistry 24 (2023) 54. https://doi.org/10.9734/irjpac/2023/v24i5825.

[5] A. A. Al-Amiery, Y. K. Al-Majedy, H. H. Ibrahim & A. A. Tamimi, “Antioxidant, antimicrobial, and theoretical studies of the thiosemicarbazone derivative Schiff base 2-(2-imino-1-methylimidazolidin-4-ylidene)hydrazinecarbothioamide (IMHC)”, Org Med Chem Lett. 2 (2012) 4. https://doi.org/10.1186/2191-2858-2-4.

[6] A. A. Al-Amiery, A. A. H. Kadhum., B. Mohamad, & S. Junaedi, “A novel hydrazinecarbothioamide as a potential corrosion inhibitor for mild steel in HCl”, Materials 6 (2013) 1420. https://doi.org/10.3390/ma6041420.

[7] T. Darell, S. T. Hulushe, T. E. Mtshare, M. R. Beteck, M. Isaacs, D. Laming,H. Hoppe, R. W. M Krause, & S. Khanye , “Synthesis, antiplasmodial and antitrypanosomal evaluation of a series of novel 2-Oxoquinoline-based Thiosemicarbazone derivatives”, Afri. J. Chem. 71 (2018) 174. https://doi.org/10.17159/0379-4350/2018/v71a23.

[8] N. U. Guzeldemirci, S. Cimok, N. Das-Evcimen, & M. Sarikaya , “ Synthesis and aldose reductase inhibitory effect of some new Hydrazinecarbothioamides and 4-Thiazolidinones bearing an Imidazo[2,1-b]Thiazolemoiety”, Turk. J. Pharm. Sci. 16 (2019) 1. https://doi.org/10.4274/tjps.05900.

[9] A. A. Hassan, R. Yusria, Y. I. Ibrahim, E. M. El-Sheref, & S. Brase, “Novel synthesis of 1,3-Thiazine and Pyrimidinethione derivatives from (1-Aryl ethylidene)hydrazinecarbothioamides and Tetracyanoethylene”, J. Heterocyclic Chem. 53 (2016) 876881. http://dx.doi.org/10.1002/jhet.2350.

[10] M. A Bhat, A. A. Khan, H. A. Ghabbour, C. K. Quah & H. Fun, “Synthesis, characterization, x-ray structure and antimicrobial activity of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl) hydrazinecarbothioamide” , Trop. J. Pharm. Res. 15 (2016) 1751. http://dx.doi.org/10.4314/tjpr.v15i8.22.

[11] A. A.Hassan, A. A. Aly, N. K. Mohamed, K. M. El- Shaieb, M. M. E. Makhlouf, E. S. M. Abdelhafez, S. M. Brase, K. N. Nieger & T. ¨S. Kaoud, “Design, synthesis, and DNA interaction studies of furo-imidazo [3.3. 3] propellane derivatives: Potential anticancer agents”, Bioorg. Chem. 85 (2019) 585. https://doi.org/10.9734/irjpac/2023/v24i5825.

[12] A. Aly , A. A. Hassan, S. M. Abdal-latif , M. A. A. Ibrahim, S. Brase & M. Nieger, “Reaction of N,N’-disubstituted hydrazinecarbothioamides with 2-bromo-2-substituted acetophenones”, Arkivoc. 23 (2013) 102. https://doi.org/10.24820/ark.5550190.p010.385.

[13] A. A. Hassan, A. A. Ashraf, T. I. M. Bedair, A. B. Brownn, I. Talaat & T. I. A. El-Emary, “Facile method for the synthesis of hydrazine-4-oxothiazolidine and imino-5-oxothiadiazine derivatives from 1,4-disubstituted thiosemicarbazides”, Journal of Heterocyclic Chemistry 51 (2013) 44. https://doi.org/10.1002/jhet.1655.

[14] S. J. Allison, G. P. Ashton, H. J. Lynch, B. R. Shire, R. M. Phillips, G. M. B. Parkes, E. Pinder, C. R. Rice, A. A. M. Teixeira, T. Volleman, & D.A. Wordsworth, “Preclinical Evaluation of Zn(II) Self-Assemblies with Selective Cytotoxic Activity Against Cancer Cells In Vitro and In Ovo”, Chem. Eur. J. 30 (2024) 1. https://doi.org/10.1002/chem.202302803.

[15] N. A. Ismail, M. A. AZIZ, Y. M.Yunus, & A. Hisyam, “Selection of extractant in rare earth solvent extraction system: A review”, international journal of recent technology 8 (2019) 2277. http://umpir.ump.edu.my/id/eprint/25038.

[16] J. G. Bunzli, “Review: Lanthanide coordination chemistry: from old concepts to coordination polymers”, J. Coord. Chem. 67 (2014) 3706. https://doi.org/10.1080/00958972.2014.957201.

[17] A. Carac , “Biological and biomedical applications of the lanthanides compounds: A Mini Review”, Proc. Rom. Acad. 19 (2017) 69. https://academiaromana.ro/sectii2002/proceedingsChemistry/doc2017-2/art01.pdf.

[18] F. B. Tamboura, A. Gueye, P. A. Gaye, M. Diallo, N. Gruber, A.Joualti & M. Gaye, “Dinuclear lanthanide(iii) complexes withschiff bases ligands derived from carbonohydrazide. Synthesis, spectroscopic studies and structural characterization”, Journal of Applied Chemistry 12 (2019) 2278. https://doi.org/10.9790/5736-1210015967.

[19] K. Raja, A. Suseelamma & K.Reddy, “Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate--textit{$pi$} interactions of cerium(III) complex”, J. Chem Sci. 128

(2016) 23. https://doi.org/10.1007/s12039-015-1003-y.

[20] M. H. Al-Amery, B. Al-Abdaly & M. K. Albayaty, “Synthesis, characterization and antibacterial activity of new complexes of some lanthanide ions with 15-crown-5 and 18-crown-6”, Orient. J. Chem. 32 (2016) 1025. http://dx.doi.org/10.13005/ojc/320228.

[21] N. M. Sudhindra, M. A. Gagnani , D. M. Indira & R. S. Shukla, “Biological and clinical aspects of lanthanide coordination compounds”, Jour nal of Bioinorganic Chemistry and Applications 2 (2004) 159. https://doi.org/10.1155/S1565363304000111.

[22] M. S. Iorungwa, J. A. Atagheri, P. T. Shimaibo & V. J. O. Nane, “Synthesis, characterization and biological profiles of Schiff base aldimines derived from N-N1- Diphenyl-O-Pyrol-6-Methyleneacetate and its Cu2+ and Fe2+ complexes” Advanced Journal of chemistry Research 1 (2023) 29. https://doi.org/10.31248/AJCR2023.006.

[23] R. K. Sodhi, S. Paul, R. K. Sodhi & S. Paul, “Metal complexes in medicine an overview and update from drug design perspective” Cancer Therapy & Oncology International Journal Cancer Therapy & Oncology International Journal 2 (2019) 001. https://dio.org/10.19080/CTOIJ.2019.14.555883.

[24] A. Gola, T. Knysak, I. Mucha & V. Musial, “Synthesis, thermogravimetric analysis, and kinetic study of Poly-N-Isopropylacrylamide with varied initiator content”, Polymer 15 (2023) 2427. https://doi.org/10.3390/polym15112427.

[25] A. Z. Sarsenbekova, G. M. Zhumanazarova, Y. M. Tazhbayev, G. K. Kudaibergen, S. K. Kabieva, Z. A. Issina, A. K. Kaldybayeva, A. O. Mukabylova & M. A. Kilybay, “Polymer (Basel)”, Research the thermal decomposition processes of copolymers based on polypropyleneglycolfumaratephthalate with acrylic acid”, polymers 15 (2023) 1725. https://doi.org/10.3390/polym15071725.

[26] F. I. Chiriac, M. Ilis, A. Madalan, D. Manaila-Maximean, M. Sech & V. Circu, “Thermal and emission properties of a series of lanthanides complexes with N-Biphenyl-Alkylated-4-Pyridone Ligands: crystal structure of a terbium complex with N-Benzyl-4-Pyridone”, Molecules 26 (2021) 2017. http://dx.doi.org/10.3390/molecules26072017.

[27] M. R. Mahendrasinh, V. P. Hermal, M. R. Lata & K. P. Nayarika, “Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors” International Journal of Pharmacy and Bio science 3 (2023) 814. https://doi.org/10.1016/j.ejmech.2012.12.060.

[28] G. Singh, V.Tyagi, P. Singh & A. Pandey, “Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and energetic approach”, Energy 194 (2020) 116799. https://doi.org/10.1016/j.energy.2019.116799.

[29] A. Falco, M. Neri, M. Merigari, L. Baraldi, G. Bonfant, M.Tegoni, A. Serpe & L. Marchio, “Semirigid ligands enhanced different coordination behavior of Nd and Dy relevant to their separation and recovery in a nonaqueous environment”, Inorg. Chem. 61 (2023) 16110. https://doi.org/10.1021/acs.inorgchem.2c02619.

[30] W. Chan, C. Xie, W. Lo, J. G. Bunzli, W. Wong & K. Wong, “Lanthanide tetrapyrrole complexes. synthesis, redox chemistry, photophysical properties and photonic applications”, Chem. Soc. Rev. 50 (2021) 12189. https://doi.10.1039/c9cs00828D.

[31] X. Yu, Y. Hu, C. Guo, Z. Chen, H. Wang & X. Li, “Discrete terpyridinelanthanide molecular and supramolecular complexes, “supramolecular materials 3 (2024) 100074. https://doi.org/10.1016/j.supmat.2022.100017.

[32] C. E. Housecroft & A. G. Sharp, Inorganic Chemistry, Third Edition. Pearson Education Limited England, 2018, pp. 722–733. https://books.google.com.ng/books/about/Inorganic_Chemistry.html?id= 1gFM51qpAMC&redir esc=y.

[33] I. Ali, W. A. Wani & K. Saleem, “Empirical formulae to molecular structures of metal complexes by molar conductance” Synthesis and Reactivity in Inorganic Metal-Organic and NanoMetal Chemistry 43 (2013) 1162. https://doi.org/10.1080/15533174.2012.756898.

[34] A. M. Ajilouni, Z. A. Taha, A. K. Hijazi & W. M. Al-momani, “A se ries of lanthanide complexes with 2-fluoro-N’-(furan-2-ylmethylene) ben zohydrazide ligand: Synthesis, characterization, luminescent properties and biological evaluation”, Appl. Organomet. Chem. 32 (2018) 2292. https://doi.org/10.1002/aoc.4536.

[35] D. A. Omoboyowa, G. Singh, J. O. Fatoki & O. Oyeneyin, “Compu tational investigation of phytochemicals from Abrus precatorius seeds as modulators of peroxisome proliferator-activated receptor gamma (PPAR?) Journal of biomolecular structure and dynamics 41 (2023) 5568. https://doi.org/10.1080/07391102.2022.2091657.

[36] A. M. May & J. L. Dempsey, “A new era of LMCT: Leveraging ligand to-metal charge transfer excited state for photochemical reactions”, Royal society of chemistry 15 (2024) 6661. https://doi.org/10.1016/j.ica.2023.121697.

[37] J. H. S. Monteiro, “Recent advance in luminescence imaging of biological systems using lanthanide (III) luminescent complexes”, molecules 25 (2020) 2089. https://doi.org/10.1016/j.ica.2023.121697.

[38] J. P. Coates, J. Workman & A. W. Sprinsteen, A Review Of Sampling Methods For Infrared Spectroscopy, Academic Press, New York, 1998, pp. 49–91. https://doi.org/10.1016/B978-012764070-9%2F50005-6.

[39] W. H. Hegazy & A. Al-Motawa, “Lanthanide Complexes of Substituted ?-Diketone Hydrazone Derivatives: Synthesis, Characterization, and Biological Activities”, Bioorgaic Chemistry and Application 2011 (2011) 531946. https://doi.org/10.1155/2011/531946.

[40] M. C. Egbujor, U. C. Okoro, S. A. Egu, V. I. Okonkwo, S. N. Okafor, C. N. Emeruwa & D. C. Nwobodo, “Synthesis and biological evaluation of sulfamoyl carboxamide derivatives from sulfur-containing ?-Amino acids”, Chiang Mai J. Sci. 49 (2022) 1100. https://doi.org/10.12982/CMJS.2022.070.

[41] M. A. Farukh, K. M. Butt, K. Chong & W.S Chang, “Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2- SiO2 nanocomposite and photophysical properties”, J. Saudi Chem. Soc. 23 (2019) 561. https://doi.org/10.1016/j.jscs.2018.10.002.

[42] A. B. Kulkarni, S. N. Methad & R. P. Bakale, “The evaluation of kinetic parameters for cadmium doped Co-Zn ferrite using thermogravimetric analysis”, Ovidius University Annals of Chemistry 30 (2019) 60. https://doi.org/10.2478/auoc-2019-0011.

[43] M. S. Iorungwa, R. A. Wuana & S. T. Dafa, “Synthesis, Characterization, Kinetics, Thermodynamic and Antimicrobial Studies of Fe(III), Cu(II), Zn(II), N,N’-Bis(2- hydroxy-1,2-diphenylethanone)ethylenediamine Complexes”, Chemical Methodologies 3 (2019) 408. https://doi.org/10.22034/chemm.2018.147922.1085.

[44] H. I. Ya-Fan, S. Xu , Q. Shi, J. Zhao, N. Ren, J. Gao & J. Zhang, “Novel lanthanide complexes synthesized from 3-Dimethylamino Benzoic acid and 5,5?-Dimethyl-2,2? Bipyridine ligand: crystal structure, thermodynamics, and fluorescence properties”, Molecules 28 (2023) 8156. https://doi.org/10.3390/molecules28248156.

[45] Z. A. Piskulich, O. O. Mesele & W. H. Thompson, “Activation energies and beyond”, The Journal of Physical Chemistry A 123 (2019) 7185. https://doi.org/10.1021/acs.jpca.9b03967.

[46] P. Jin, Q. Luo, G. K. Gransbury, I. J. Vitorica-Yrezabal, T. Hajdu, I. Strashnow, E. J. Mclnnes, R. E. Winpenny, N. F. Chilton, D. P. Mills & Y. Zheng, “Thermally stable terium (III) and Dysprosium (III) bisamidinate complexes”, J. Am. Chem. Soc. 145 (2023) 27993. https://doi.org/10.1021/jacs.3c07978.

[47] E. A. Ivanova , K. S. Smirnova, I. P. Pozdnyakov, A. S. Potapov & E. V. Lider, “Synthesis, crystal structures, and luminescence properties of lanthanide(III) complexes with 1-(1H-benzimidazol-1yl-methyl)-1Hbenzotriazole”, Inorganic chimica 557 (2023) 121697. https://doi.org/10.1016/j.ica.2023.121697.

[48] M. Ghhaza, M. Safder, T. Lasttusaari & M. Karppinen, “Amorphous to crystalline transition and photoluminescence switching in guest absorbing metal organic network thin films”, Chem. Commun. 56 (2020) 241. https://doi.org/10.1039/c9cc08904g.

[49] A. M. Ajilouni, Z. A. Taha, A. K. Hijazi & W. M. Al-momani, “A series of lanthanide complexes with 2-fluoro-N’-(furan-2-ylmethylene) benzohydrazide ligand: Synthesis, characterization, luminescent properties and biological evaluation”, Appl. Organomet. Chem. 32 (2018) 2292. http://dx.doi.org/10.1002/aoc.4536.

[50] G. A. Thakur, U. N. Dhaigude & P. B. Thakur, “Synthesis, spectral characterization and antibacterial studies of mixed ligand La(III) and Ce(III) complexes derived from 1-nitroso-2-naphthol and some amino acids”, Orient Journal Chemistry 36 (2020) 632639. http://dx.doi.org/10.13005/ojc/360406.

[51] S. B. Vidyasagar, S. Eswaramma & K. Krishna- Rao, “Synthesis, characterization, luminescence and biological activities of lanthanide complexes with a hydrazone ligand”, Main group chemistry 17 (2018) 99. http://dx.doi.org/10.3233/MGC-180251.

[52] A. D. Sharma, A. D. Kaur & A. Chauhan, “Molecular docking studies of principal components and in vitro inhibitory activities of Rosmarinus officinalis essential oil against Aspergillus flavus, Aspergillus fumigatus and Mucor indicus”, Phytomedicine plus 3 (2023) 100493. https://doi.org/10.1016/j.phyplu.2023.100493.

[53] A. Alanio, S. Delli‘ere, S. Fodil, S. M. Bretagne & B. M´egarbane, “Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19”, Lancet. Respir. Med. 8 (202) 48. https://doi.org/10.1016/s2213-2600(20)30237-x.

[54] T. M. John, C. N. Jacob & D. P. Kontoyiannis, “ When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis”, J. Fungi 7 (2020) 298. https://doi.org/10.3390/jof7040298.

[55] M. Hoenigl, D. Seidel, R. Sprute, C. Cunha, M. Oliverio, G. H. Goldman, A. S. Ibrahim & A. Carvalho, “COVID-19-associated fungal infections”, Nat. Microbiol. 7 (2022) 1127. https://doi.org/10.1038/s41564-022-01172-2.

[56] K. E. Schweer, C. Bangard, K. Hekmat & O. A. Cornely, “Chronic pulmonary aspergillosis”, Mycoses 57 (2014) 257. https://doi.org/10.1111/myc.12152.

[57] M. Kumar, G. C. Sahoo, W. A. Ansari, M. A. Ali, M. A. Farah & J. Lee, “Molecular docking analysis of Omt-A protein model from Aspergillus flavus with synthetic compounds”, J. Bioinformation 19 (2023) 990. https://doi.org/10.6026/97320630019990.

[58] B. K. Kumara, A. R. Lingaiah, P. V. Rao, P. S. Narsaiah, B. Reddy, A. S. K & U.S.N. Murty, “Design, synthesis and biological evaluation of benzimidazole-pyridine- piperidine hybrids as a new class of potent antimicrobial agents”, Lett. Drug Des. Discovery 12 (2015) 38. http://dx.doi.org/10.2174/1570180811666140725185713.

[59] M. A. Begam, N. Akalya, N. Murugesan, R. Dass & N. Prakash, “Antimicrobial screening and molecular docking of synthesized 4,6- di(1H-indol-3-yl)-1,6-dihydropyrimidin-2-amine”, Intelligent pharmacy 2 (2024) 571577. http://dx.doi.org/10.1016/j.ipha.2024.01.002.

[60] T. Sisay, N. Mainal, S. Wachira & V. A. Mobegi, “In-silico evaluation of fungal and bacterial L-asparaginases allergenicity”, Informatics in Medicine Unlocked 43 (2023) 101398. https://doi.org/10.1016/j.imu.2023.101398.

[61] M. Raftani, T. Abram, A. Azaid, R. Kacimi, M./N. Bennani & M. Bouachrine, “Theoretical design of new organic compounds based on diketopyrrolopyrrole and phenyl for organic bulk heterojunction solar cell applications: DFT and TD-DFT study”, Materials Today: Proceedings 45 (2021) 7334. https://doi.org/10.1016/j.matpr.2020.12.1228.

[62] M. A. Mumit, T. K. Pal, M. A. M. Alam, M. A. Islam, S. Paul & M. Sheikh, “DFT studies on vibrational and electronic spectra, HOMO– LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate”, Journal

of molecular structure 1220 (2020) 128715. https://doi.org/10.1016/j.molstruc.2020.128715.

[63] T. Sisay, N. Mainal, S. Wachira & V. A. Mobegi, “In-silico evaluation of fungal and bacterial L-asparaginases allergenicity”, Informatics in Medicine Unlocked 43 (2023) 101398. https://doi.org/10.1016/j.imu.2023.101398.

[64] N. Premjanu, C. Jaynthy & S. Diviya, “Antifungal activity of endophyticfungi isolated from lannea coromandelica Aˆ €“ An Insilico Aproach”, Int. J. Pharm. Pharm. Sci. 8 (2016) 207. https://journals.innovareacademics.in/index.php/ijpps/article/view/9633.

[65] N. Elangovan, R. Thomas & S. Sowrirajan, “Synthesis of Schiff base (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-Nthiazole-2-yl)benzenesulfonamide with antimicrobial potential, structural features, experimental biological screening and quantum mechanical studies” J. Mol. Struct 1250 (2022) 131762. https://doi.org/10.1016/j.molstruc.2021.131762.

[66] J. Makhlouf, H. Louis, I. Benjamin, E. Ukwenya, A. Valkonen & W. Smirani, “Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex”, J. Mol. Struct 1272 (2023) 134223. https://doi.org/10.1016/j.molstruc.2022.134223.

[67] S. D. Oladipo, A. A. Adeleke, A. A. Badeji, K. I. Babalola, A. H. Labulo, I. Hassan, S. T. Yussuf, S. O. Olalekan, “Computational investigation and biological activity of selected Schiff bases”, J. Nig. Soc. Phys. Sci. 6 (2024) 2103. https://doi.org/10.46481/jnsps.2024.2103.

[68] W. Chen, M. Li, W. HiBo, L. Zhiwei, B. Zuqiana & H.Chunhui, “Advances in luminescence lanthanide complexes and applications”, Science China technological science 61 (2018) 1. https://doi.org/10.1016/j.ica.2023.121697.

[69] M. C. Egbuhor, U. C. Okoro, S. N. Okafor, P. I. Egwuatu, I. S. Amasiatu & U. B. Amadi, “molecular docking of some Monoazaphenothiazine derivatives as antimicrobial agents”, Journal of pharmaceutical research 5 (2020) 60. https://www.opastpublishers.com/peer-review/molecular-docking-of-some-monoazaphenothiazine-derivatives-as-antimicrobial-agents-3943.html.

Structure of 2–(2–hydroxybenzoyl) hydrazinecarbothioamide ligand (HL1)

Published

2025-05-01

How to Cite

Design, synthesis and studies on thermodynamic and biological activities of lanthanide III complexes of hydrazinecarbothioamide ligands. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2540. https://doi.org/10.46481/jnsps.2025.2540

Issue

Section

Chemistry

How to Cite

Design, synthesis and studies on thermodynamic and biological activities of lanthanide III complexes of hydrazinecarbothioamide ligands. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2540. https://doi.org/10.46481/jnsps.2025.2540