Interaction of hydroxyapatite and chitosan with gentamicin and their antimicrobial activities: DFT and molecular docking approach

Authors

  • Nassima Bou-ydia Laboratory of Molecular Chemistry, Materials, and Catalysis, Sustainable Development Team, Sultan Moulay Slimane University, Beni Mellal, Morocco
  • Ben-issa El miraoui Laboratory of Molecular Chemistry, Materials, and Catalysis, Sustainable Development Team, Sultan Moulay Slimane University, Beni Mellal, Morocco
  • Latifa Laallam Laboratory of Molecular Chemistry, Materials, and Catalysis, Sustainable Development Team, Sultan Moulay Slimane University, Beni Mellal, Morocco
  • Ahmed Jouaiti Laboratory of Molecular Chemistry, Materials, and Catalysis, Sustainable Development Team, Sultan Moulay Slimane University, Beni Mellal, Morocco

Keywords:

Hydroxyapatite, Chitosan, Gentamicin, Protein A

Abstract

Motivated by the potential use of hydroxyapatite and chitosan as drug delivery systems for the antibiotic gentamicin in the coating of metal implants, a theoretical study was conducted to investigate the interaction mechanisms among these three compounds, assess the stability of the resulting coating, and evaluate the inhibitory potential of chitosan and gentamicin against Protein A from Staphylococcus aureus. The results of this study demonstrate that hydroxyapatite, chitosan, and gentamicin exhibit a low HOMO-LUMO energy gap, indicating that electron transfer between their molecular orbitals can occur readily due to the molecules’ structural flexibility. Additionally, chitosan shows a stronger binding affinity for gentamicin than hydroxyapatite, and both chitosan and gentamicin display a significant inhibitory effect against Protein A. Two theoretical approaches were employed: density functional theory using the B3LYP functional (Becke’s three-parameter hybrid functional combined with the LYP correlation functional) and the 3-21G basis set, as well as a molecular docking study using the MOE software (version 2015). The docking simulations generated 30 binding poses, which were evaluated using the London dG scoring function and refined twice using the Triangle Matcher placement method.

Dimensions

[1] Y. Wang, J. Liu, C. Zhang, Y. Wang & T. Fan, “Recent development of chitosan-based biomaterials for the treatment of osteomyelitis”, Journal of Polymer Engineering 44 (2024) 1437. https://doi.org/10.1515/polyeng-2023-0294.

[2] X. Ji, L. Gao, J. C. Liu, J. Wang, Q. Cheng, J. P. Li, S. Q. Li, K. Q. Zhi, R. C. Zeng & Z. L. Wang, “Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys”, Colloids and Surfaces B: Biointerfaces 179 (2019) 429. https://doi.org/10.1016/j.colsurfb.2019.04.029.

[3] C. C. Yang, C. C. Lin, J. W. Liao & S. K. Yen, “Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release”, Materials Sciences and Engineering C 33 (2013) 2203. https://doi.org/10.1016/j.msec.2013.01.038.

[4] L. L. Lima, P. R. Oliveira, V. C. Carvalho, S. Cimmerman & E. Savio, “Recommendations for the treatment of osteomyelitis”, The Brazilian Journal of Infectious Diseases 5 (2014) 526. http://dx.doi.org/10.1016/j.bjid.2013.12.005.

[5] L. Zhang, K. Jacobson, J. Vasi, M. Lindberg & L. Frykberg, “Second IgG-binding protein in staphylococcus aureus”, Microbiology 144 (1998) 985. https://doi.org/10.1099/00221287-144-4-985.

[6] J. J. Langone, “Applications of immobilized protein A in immunochemical techniques”, Journal of Immunological Methods 3 (1982) 277. https://doi.org/10.1016/0022-1759(82)90088-6.

[7] M. Stevanovi, M. Dosic, A. Jankovic, M. Vukasinovic-Sekulic, J. Stojanovic, J. Odovic, M. C. Sakac, K. Y. Rhee & V. Miskovic-Stankovic, “Gentamicin-loaded bioactive hydroxyapatite/chitosan composite coating electrodeposited on titanium”, ACS Biomaterials Science and Engineering 12 (2018) 3994. https://doi.org/10.1021/acsbiomaterials.8b00859.

[8] M. Stevanović, M. Djosić, A. Janković, V. Kojić, M. Vukasinovic Sekulić, J. Stojanović, J. Odovipac, M. C. Sakac, R. K. Yop & V. Miskovic Stanković, “Antibacterial graphene-based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering”, Journal of Biomedical Materials Research Part A 108 (2020) 2175. https://doi.org/10.1002/jbm.a.36974.

[9] I. Kara, Y. Kara, A. O. Kiraz & R. Mammadov, “Theoretical calculations of a compound formed by Fe+3 and tris(catechol)”, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 149 (2015) 592. https://doi.org/10.1016/j.saa.2015.04.058.

[10] F. Gharibzadeh, E. Vessally, L. Edjlali, M. Es Haghi & R. Mohammadi, “A DFT study on sumanene, corannulene, and nanosheet as the anodes in li-ion batteries”, Iranian Journal of Chemistry and Chemical Engineering 104 (2020) 51. https://doi.org/10.30492/ijcce.2020.106867.3568.

[11] D. T. Reis, S. Q. de Aguiar Filho, C. G. L. Grotto, M. F. R. Bihain & D. H. Pereira, “Carboxymethyl cellulose and cellulose xanthate matrices as potential adsorbent material for potentially toxic Cr3+, Cu2+, and Cd2+ metal ions: a theoretical study”, Theoretical Chemistry Accounts 139 (2020) 96. https://doi.org/10.1007/s00214-020-02610-2.

[12] A. B. Cruz, N. N. Ciribelli, C. L. Cunha, I. R. Nascimento, J. C. Holzbach & D. H. Pereira, “Theoretical and experimental study of the diastereoisomers (2S) and (2R)-naringenin-6-C-?-D-glucopyranoside obtained from Clitoria guianensis”, Journal of Molecular Modeling 29 (2023) 77. https://doi.org/10.1007/s00894-023-05482-y.

[13] S. Duran & S. T. Moin, “Chitosan nanoparticles as drug carrier of gentamicin-density functional theory and molecular dynamics simulation studies”, Journal of Molecular Liquids 413 (2024) 125866. https://doi.org/10.1016/j.molliq.2024.125866.

[14] H. M. Abumelha, J. H. Al Fahemi, I. Althagaf, A. A. Bayazeed, Z. A. Al Ahmed, A. M. Khedr & N. El Metwaly, “Deliberate-characterization for Ni(II)-Schiff base complexes: promising in-vitro anticancer feature that matched MOE docking-approach”, Journal of Inorganic and Organometallic Polymers and Materials 9 (2020) 3277. https://doi.org/10.1007/s10904-020-01503-y.

[15] G. A. A. Al-Hazmi, K. S. Abou-Melha, N. M. El-Metwaly, I. Althagafi, F. Shaaban & R. Zaky, “Green synthesis approach for Fe (III), Cu (II), Zn (II) and Ni (II)-Schiff base complexes, spectral, conformational, MOE docking, and biological studies”, Applied Organometallic Chemistry 34 (2019) e5403. https://doi.org/10.1002/aoc.5403.

[16] M. Frisch, “Gaussian 09, revision d. 01, Gaussian”, Inc., Wallingford CT 201, 2009. [Online]. https://cir.nii.ac.jp/crid/1370298757422456580.

[17] T. A. Keith & M. J. Frisch, “Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions”, Journal of Physical Chemistry A 115 (2011) 12879. https://doi.org/10.1021/jp2040086.

[18] D. T. Reis, I. H. S. Ribeiro & D. H. Pereira, “DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd2+, Cu2+ and Cr3+) potentially toxic”, Polymer Bulletin 77 (2020) 3443. https://doi.org/10.1007/s00289-019-02926-5.

[19] H. Atmani, A. Aboulouard, F. E. Bakkardouch, L. Laallam, A. Jouaiti & M. El Edrissi, “Physical and chemical aspects of the interaction of chitosan and cellulose acetate with ions Ca2+ and K+ using DFT methods”, Journal of Molecular Modeling 27 (2021) 103. https://doi.org/10.1007/s00894-021-04715-2.

[20] Z. Guerfi, O. K. Kribaa & H. Djouama, “Chemical-physical behavior of hydroxyapatite: a modeling approach”, Journal of the Mechanical Behavior of Biomedical Materials 150 (2024) 106. https://doi.org/10.1016/j.jmbbm.2023.106229.

[21] K. Fukui, “Role of frontier orbitals in chemical reactions”, Science 218 (1982) 747. https://doi.org/10.1126/science.218.4574.747.

[22] H. P. Gümü, Ö. Tamer, Avci D & Y. Atalay, “Quantum chemical calculations on the geometrical, conformational, spectroscopic and nonlinear optical parameters of 5-(2-chloroethyl)-2,4-dichloro-6-methyl pyrimidine”, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 129 (2014) 219. https://doi.org/10.1016/j.saa.2014.03.031.

[23] R. Kurtaran, S. Odabaiolu, A. Azizoglu, H. Kara & O. Atakol, “Experimental and computational study on [2,6-bis(3,5-dimethyl-N-pyrazolyl)pyridine]-(dithiocyanato)mercury(II)”, Polyhedron 17 (2007) 5069. https://doi.org/10.1016/j.poly.2007.07.021.

[24] S. C. Dey, M. Al-Amin, T. U. Rashid, M. Z. Sultan, M. Ashaduzzaman, M. Sarker & S. M. Shamsuddin, “Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red”, International Journal of Latest Research in Engineering and Technology 2 (2016) 52. https://d1wqtxts1xzle7.cloudfront.net/43711400/Chitosan$_RemazolRed-libre.pdf.

[25] N. Rahman, I. Muhammad, Gul-E-Nayab, H. Khan, M. Aschner, R. Filosa & M. Daglia, “Molecular docking of isolated alkaloids for possible glucosidase inhibition”, Biomolecules 9 (2019) 544. https://doi.org/10.3390/biom9100544.

Published

2025-08-01

How to Cite

Interaction of hydroxyapatite and chitosan with gentamicin and their antimicrobial activities: DFT and molecular docking approach. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2734. https://doi.org/10.46481/jnsps.2025.2734

Issue

Section

Chemistry

How to Cite

Interaction of hydroxyapatite and chitosan with gentamicin and their antimicrobial activities: DFT and molecular docking approach. (2025). Journal of the Nigerian Society of Physical Sciences, 7(3), 2734. https://doi.org/10.46481/jnsps.2025.2734