A model for the control of transmission dynamics of human monkeypox disease in Sub-Saharan Africa

Authors

  • Bolarinwa Bolaji Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria; Laboratory of Mathematical Epidemiology and Applied Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria
  • Abdullahi Ibrahim Department of Mathematics, Baze University, Jabi Airport Road Bypass (Ring Road), Jabi, Abuja, 901108, Nigeria
  • Favour Ani Department of Mathematics, National Open University of Nigeria, Nnamdi Azikiwe Expressway, Jabi, 901108, Abuja, Nigeria
  • Benjamin Omede Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria; Laboratory of Mathematical Epidemiology and Applied Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria
  • Godwin Acheneje Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria; Laboratory of Mathematical Epidemiology and Applied Sciences, Prince Abubakar Audu University, Anyigba, P.M.B 1008, Nigeria

Keywords:

Human monkeypox, Vaccination, Equilibria, Stability

Abstract

The Human Monkeypox virus has received significant research interest in recent times. While few researchers have studied the effects of vaccination on human-to-animal or animal-to-human Monkeypox transmission, others just studied the effects of treatment on human Monkeypox. In this article, we made the proposition of a deterministic vaccine model that deals with the dynamics of the effects of vaccination and treatment on human Monkeypox in sub-Saharan Africa. We investigated the effects of vaccination on the various epidemiological classes qualitatively. The findings from the analysis of the model are that the model possesses two equilibria, locally asymptotically stable disease-free equilibrium (DFE) when an epidemiological threshold - the effective reproductive number is less than unity, and locally asymptotically stable endemic equilibrium when the number is greater than unity. We then corroborated the theoretical findings with numerical simulations, which reveal that when the rate of vaccination is increased resulting in many newly born persons in the populace being vaccinated, the prevalence of the deadly scourge is significantly reduced, while newly born individuals that miss vaccination experience a drastic torment of the deadly disease that often occasion death. Further revelation from the simulations is that when greater efforts is geared towards vaccination of individuals in the population, the loss of more people to the scourge of the virus would be greatly reduced.

Dimensions

S. Arita, L. Jezek & K. R. Khodakevich, “Human Monkeypox: A newly emerged orthopox virus zoonosis in the tropical rain forests of Africa”, Am. J Trop Med Hyg. 34 (1985) 781. https://doi.org/10.4269/ajtmh.1985. 34.781.

J. G. Breman, “Monkeypox: An emerging infection for humans?”, in Emerging infections, W. M. Scheld, W. A. Craig, and J. M. Hughes (eds.), ASM Press, Washington, D.C., 2000, pp. 45–67. https://doi.org/10.1128/9781555816971.ch5.

A. Nalca, A. W. Rimoin, S. Bavari & C. A. Whitehouse, “Re-emergence of monkey pox: prevalence, diagnostics, and countermeasures”, Clin. Infect Dis. 41 (2005) 1765. https://doi.org/10.1086/498155.

A. Mackett & J. Archard, “Conservation and variation in orthopox virus genome structure”, J. Gen. Virol. 45 (1979) 683. https://doi.org/10.1099/0022-1317-45-3-683.

J. Esposito & K. Knight, “Orthopox virus DNA: a comparison of restriction profiles and maps”, Virology 143 (1985) 230. https://doi.org/10.1016/0042-6822(85)90111-4.

A. M. Likos et al., “A tale of two Clades: Monkey pox viruses”, J. Gen. Virol. 86 (2005) 2661. https://doi.org/10.1099/vir.0.81215-0.

K. D. Reed et al., “The detection of monkey pox in humans in the western hemisphere”, New England Journal of Medicine 350 (2004) 342. https://doi.org/10.1056/NEJMoa032299.

M. Stanford, G. Mcfadden, G. Karupiah & G. Chaudhri, “Immuno pathogenesis of pox virus infections: Forecasting the impending storm”, Immunology and Cell Biology 85 (2007) 93. https://doi.org/10.1038/sj.icb.7100033.

G. D. Huhn, A. M. Bauer, K. Yorita, M. B. Graham, J. Sejvar, A. Likos, I. K. Damon, M. G. Reynolds & M. J. Kuehnert, “Clinical characteristics of human monkey pox and risk factors for severe disease”, Clinical Infectious Diseases 41 (2005) 1742. https://doi.org/10.1086/498115.

E. Sbrana, S.-Y. Xiao, P. C New,an & R. B. Tesh, “Comparative pathology of North American and Central African strains of monkey pox virus in a ground squirrel model of the disease”, Am. J. Trop. Med. Hyg. 76 (2007) 155. https://doi.org/10.4269/ajtmh.2007.76.155.

M. G. Reynolds, K. L. Yorita, M. J. Keuhnert, W. B. Davidson, G. D. Huhn, R. C. Holman & I. K. Damon, “Clinical manifestations of human monkey pox influenced by route of infection”, Journal of Infectious Diseases 194 (2006) 773. https://doi.org/10.1086/505880.

L. Khodakevich, Z. Jezek & K. Kinzanzka, “Isolation of monkey pox virus from wild squirrel infected in nature”, Lancet 1 (1986) 98. https://doi.org/10.1016/S0140-6736(86)90748-8.

L. Khodakevich, Z. Jezek & D. Messinger, “Monkey pox virus: ecology and public health significance”, Bull World Health Organ 66 (1988) 47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491157/.

T. A. Sale, J. W. Melski & E. J. Stratmen, “Monkey pox: an epidemiologic and clinical comparison of African and US Disease”, Journal of the American Academy of Dermatology 55 (2006) 478. https://doi.org/10.1016/j.jaad.2006.05.061.

Centers for Disease Control and Prevention (CDC), “About monkey pox”, 2022. https://www.cdc.gov/poxvirus/monkeypox/about.html, assessed on April 16, 2022.

P. C. Emeka, M. O. Onuorah, F. Y. Eguda, and B. G. Babangida, “Mathematical model for monkey pox virus transmission dynamics”, Epidemiology (Sunnyvale) 8 (2017) 348. https://doi.org/10.4172/2161-1165.1000348.

S. Usman & I. Adamu, “Modeling the transmission dynamics of the monkey pox virus infection with treatment and vaccination interventions”, Journal of Applied Mathematics and Physics 5 (2017) 2335. https://doi.org/10.4236/jamp.2017.512191.

O. J. Peter, C. E. Madubueze, M. M. Ojo, F. A. Oguntolu & T. A. Ayoola, “Transmission dynamics of Monkeypox virus: a mathematical modelling approach”, Modeling Earth Systems and Environment 8 (2022) 3423. https://doi.org/10.1007/s40808-021-01313-2.

S. V. Bankuru, S. Kossol, W. Hou, P. Mahmoudi, J. Rychtar & D. Taylor, “A game-theoretic model of Monkeypox to assess vaccination strategies”, PeerJ 8 (2020) e9272. https://doi.org/10.7717/peerj.9272.

O. J. Peter, A. Abidemi, M. M. Ojo & T. A. Ayoola, “Mathematical model and analysis of Monkeypox with control strategies”, Eur. Phys. J. Plus 138 (2023) 242. https://doi.org/10.1140/epjp/s13360-023-03865-x.

O. J. Peter. C. E. Madubueze, M. M. Ojo, F. A. Oguntolu & T. A. Ayoola, “Modelling and optimal control of Monkeypox with cost-effective strategies”, Model. Earth Syst. Environ. 9 (2023) 1989. https://doi.org/10.1007/s40808-022-01607-z.

E. Alakunle, U. Moens, G. Nchinda & M. Okeke, “Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution”, Viruses 12 (2020) 1257. https://doi.org/10.3390/v12111257.

R. Grant, L. L. Nguyen & R. Breban, “Modelling human-to-human transmission of Monkeypox”, Bull World Health Organ 98 (2020) 638. https://doi.org/10.2471/BLT.19.242347.

G. Birkhoff & G. Rota, Ordinary differential equations, Ginn and Company, Boston, 1962.

S. O. Sowole, D. Sangare, A. A. Ibrahim & I. A. Paul, “On the existence, uniqueness, stability of solution and numerical simulations of a mathematical model for measles disease”, International Journal of Advances in Mathematics 4 (2019) 84. https://adv-math.com/wp-content/uploads/2019/07/adv-manuscript.pdf.pdf.

P. Van den Driessche & J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental; models of disease transmission”, Math. Biosci. 180 (2002) 29. https://doi.org/10.1016/S0025-5564(02)00108-6.

O. Diekman, J. A. P. Heesterbeek & J. A. J. Metz, “On the definition and computation of the basic reproduction numbers in the models for infectious diseases in heterogeneous populations”, J. Math. Biol. 28 (1990) 365. https://doi.org/10.1007/BF00178324.

J. D. Murray, Mathematical Biology I, An introduction, 3rd Ed., SpringerVerlag Berlin Heidelberg, 2001. http://pcleon.if.ufrgs.br/pub/listas-sistdin/MurrayI.pdf

J. La Salle, The stability of dynamical systems, SIAM, Philadelphia, 1976. https://doi.org/doi/10.1137/1.9781611970432.fm

C. Castillo-Chavez & B. Song, “Dynamical models of tuberculosis and their applications”, Mathematical Biosciences and Engineering 1 (2004) 361. https://www.aimspress.com/article/10.3934/mbe.2004.1.361.

B. Bolaji, U. B. Odionyenma, B. I. Omede, P. B. Ojih & A. A. Ibrahim, “Modelling the transmission dynamics of Omicron variant of COVID-19 in densely populated city of Lagos in Nigeria”, J. Nig. Soc. Phys. Sci. 5 (2023) 1055. https://doi.org/10.46481/jnsps.2023.1055.

Published

2024-05-13

How to Cite

A model for the control of transmission dynamics of human monkeypox disease in Sub-Saharan Africa. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 1800. https://doi.org/10.46481/jnsps.2024.1800

Issue

Section

Mathematics & Statistics

How to Cite

A model for the control of transmission dynamics of human monkeypox disease in Sub-Saharan Africa. (2024). Journal of the Nigerian Society of Physical Sciences, 6(2), 1800. https://doi.org/10.46481/jnsps.2024.1800