Interpretation of airborne radiometric data of flamingo field, Southwestern Nigeria

Authors

  • T. O Lawal Department of Physics, University of Ilorin, P.M.B. 1515, Ilorin Nigeria
  • O. Fawale Department of Science Lab. Tech, Federal Polytechnic, Ado-Ekiti
  • J. A. Sunday Department of Science Lab. Tech, Kwara State Polytechnic Ilorin
  • G. B. Egbeyale Department of Physics and Material Science, Kwara State University Malete

Keywords:

Southwest, Radiometric anomalies, alteration zones

Abstract

The airborne radiometric data of the Flamingo Field, Southwest Nigeria has been analyzed and interpreted with the aim of evaluating the surface geology and structural features that are critical for mineral resource exploration. The objectives of the study are to delineate the alteration zones by correlating interpreted data with the lithological units, and to describe the relationship between the airborne radiometric anomalies and the subsurface structural trends. To achieve this, the data was subjected to rigorous qualitative and quantitative interpretation. Maximum and minimum concentration values for Total count (TC (Unit of radiation (Ur)) rate, Potassium (K %), equivalent of Thorium (eTh) and that of Uranium (eU) were estimated. The results of the study show that the  value of Ur, K, eTh%, and eU in Flamingo Field range from 2.408 to  41.017, 0.162 to 3.238 (%), 0.846 to 33.104 (ppm) and 0.169 to 7.232 (ppm), respectively. Locations of the associated anomalies which serve as alteration zones were obtained and values obtained from this expression clearly reveals that majority of the rock units for most of the radio elements in the area  are below one hundred percent, while few others such as carbonaceous/slate phyllite, meta siltstone, undifferentiated schist and granite gneiss have values above 100%, especially for potassium and thorium elements. Also, the produced composite radioelements and image maps reveals bright some zones within the field which is a revelation of anomalous alteration zones. More so, the most prominent trend in the field correspond to the Northeast -- Southwest and Northwest -- Southeast directions which plays an important role in the structural framework of the study area.

Dimensions

M. A. S. Youssef & S. T. Elkhodary, “Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt”, Geophysical Journal International 195 (2013) 1689. https://doi.org/10.1093/gji/ggt375.

V. Paoletti & Pinto, “A. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and GammaRay Surveys”, Surv Geophys 37 (2016) 601. https://doi.org/10.1007/s10712-015-9352-0.

E. Elawadi, A. Ammar & A. Elsirafy, “Mapping surface geology using airborne gamma-ray spectrometric survey data-A case study”, Proceedings of the 7th SEGJ International Symposium, Japan, 2004, pp. 11–17. https://www.researchgate.net/publication/259822736.

G. M. Saleh, A. M Afify, B. M. Emad, M. I. Dawoud, H. A Shahin & F. M. Khaleal, “Mineralogical and geochemical characterization of radioactive minerals and rare earth elements in granitic pegmatites at G. El Fereyid, South Eastern Desert, Egypt”, Journal of African Earth Sciences 160 (2019) 103651. https://doi.org/10.1016/j.jafrearsci.2019.103651.

R. B. K. Shives, B. W. Charbonneau & K. L. Ford, “The detection of potassic alteration by gamma-ray spectrometry—Recognition of alteration related to mineralization Detecting Ore Using GRS and K Alteration, Geophysics 65 (2000) 2001. https://doi.org/10.1190/1.1444884.

A. R. Faruwa, W. Qian, A. T. Agbele, A. B. Babinisi & B. A. Yekeen, “Airborne radiometric mapping for natural radiation assessment over Okitipupa southeast belt of the bituminous sand field of Nigeria”, Radiation Protection Dosimetry 192 (2020) 97. https://doi.org/10.1093/rpd/ncaa188.

M. A. Adabanija, O. N. Anie & M. A. Oladunjoye, “Radioactivity and gamma ray spectrometry of basement rocks in Okene area, southwestern Nigeria”, NRIAG Journal of Astronomy and Geophysics 9 (2020) 71. https://doi.org/10.1080/20909977.2020.1711695.

R. A. Y. El Qassas, M. Salaheldin, S. M. A. Assran, T. Abdel Fattah & M. A. Rashed, “Airborne gamma-ray spectrometric data interpretation on Wadi Queih and Wadi Safaga area, Central Eastern Desert, Egypt”, NRIAG Journal of Astronomy and Geophysics 9 (2020) 155. https://doi.org/10.1080/20909977.2020.1728893.

T. O. Lawal, “Integrated aeromagnetic and aeroradiometric data for delineating lithologies, structures, and hydrothermal alteration zones in part of southwestern Nigeria”, Arabian Journal of Geosciences 13 (2020) 1. https://doi.org/10.1007/s12517-020-05743-7.

A. S. Akingboye, A. C. Ogunyele, A. T. Jimoh, O. B. Adaramoye, A. O. Adeola & T. Ajayi, “Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of AkungbaAkoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry”, Environmental Earth Sciences 80 (2021) 1. https://doi.org/10.1007/s12665-021-09516-7.

W. O. Raji & R. B. Bale, “The geology and geophysical studies of a gravel deposit in university of Ilorin, Southwestern Nigeria”, Continental journal of earth Sciences 3 (2008) 40. https://www.researchgate.net/publication/315112835.

A. S. Aromoye, S. A. Alimi, O. S. Bello, W. O. Raji, L. O. Olawale & D. S. Bonde, “2-D Electrical resistivity tomography for groundwater potential in basement terrain of a part of Ilorin Sheet 223 NW Nigeria”, audi J Eng Technology 4 (2019) 357. http://scholarsmepub.com/sjet/.

O. B. Balogun, “Tectonic and structural analysis of the Migmatite– Gneiss–Quartzite complex of Ilorin area from aeromagnetic data. NRIAG Journal of Astronomy and Geophysics 8 (2019) 22. https://doi.org/10.1080/20909977.2019.1615795.

N. G. Obaje, “Geology and Mineral Resources of Nigeria”, Springer, Berlin, Germany, 2009, pp 1–9. https://doi.org/10.1007/978-3-540-92685-6.

O. S. Ogungbemi, J. O. Amigun, G. M. Olayanju & G. O. Badmus, “Airborne and ground geophysical evaluation of potential mineralized zone in parts of Ilesha schist belt, southwestern Nigeria”, Interpretation 9 (2021) SH75. https://doi.org/10.1190/INT-2021-0012.1.

O. T. Olurin, “Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method”, Materials and Geoenvironment 64 (2017) 227. https://doi.org/10.1515/rmzmag-2017-0013

Nigeria Geological Survey Agency, “Airborne Magnetic Data”, 2024. [Online]. https://ngsa.gov.ng/airborne-magnetic-data/.

W. O. Raji & O. K. Ibrahim, “Geophysical investigation for Basement Rock Structures around a proposed Dam site”, Adamawa State University Journal of Scientific Research 5 (2017) 38. https://www.researchgate.net/profile/Toyin-Ibrahim-Alli/publication/339941827_Geophysical_investigation_for_Basement_Rock_Structures_around_a_proposed_Dam_site/links/5e6e45f2458515e5557e55bc/Geophysical-investigation-for-Basement-Rock-Structures-around-a-proposed-Dam-site.pdf

Published

2025-02-01

How to Cite

Interpretation of airborne radiometric data of flamingo field, Southwestern Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 1958. https://doi.org/10.46481/jnsps.2025.1958

Issue

Section

Earth Sciences

How to Cite

Interpretation of airborne radiometric data of flamingo field, Southwestern Nigeria. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 1958. https://doi.org/10.46481/jnsps.2025.1958