Statistical Analysis and Distribution of Global Solar Radiation and Temperature Over Southern Nigeria

Authors

  • M. A. Okono Department of Physics, University of Calabar, Nigeria
  • E. P. Agbo Cross River University of Technology, Calabar, Cross River State, Nigeria https://orcid.org/0000-0002-0215-2492
  • B. J. Ekah Department of Physics, University of Calabar, Nigeria
  • U. J. Ekah Cross River University of Technology, Calabar, Cross River State, Nigeria
  • E. B. Ettah Cross River University of Technology, Calabar, Cross River State, Nigeria
  • C. O. Edet Cross River University of Technology, Calabar, Cross River State, Nigeria

Keywords:

Global solar radiation, temperature, Box plots, Mann-Kendall test, Gaussian distribution, linear regression, Sen's slope estimate

Abstract

The intensity of solar energy that is received by a particular location is affected by most meteorological conditions including, the solar irradiance received by the location, precipitation, extreme heat as a result of the surface or ambient temperature, etc. We obtain the monthly global solar irradiation and ambient temperature for the three (3) eco-climatic zones in the south of Nigeria (17 locations) for 12 years (2005 - 2016) from the Photovoltaic Geographical Information System (PVGIS) Satellite. The goal of this study is to understand how regional meteorological conditions affect radiation and temperature reception. Monthly and annual trends were plotted and compared for both variables in each region to show the similarity or dichotomy in their trends. The Mann-Kendall (M-K) trend test has been adopted to reveal that the changes in the variations on an annual basis, and results showed that the trend were not significant for both variables. Box plots have been used to give a better description of the data, and compared to show similarities and differences. Finally, we adopted the Gaussian (normal) distribution to show, understand and compare the data distribution. Linear regression plots for each zone shows that the relationship between the solar irradiation and temperature is high. Results show that the climate and vegetation of a region contributes majorly to the variation of radiation and temperature. Inhomogeneity
of data or results for locations in the same zones may be attributed to local meteorological conditions. The results obtained here will prove vital in decision making relating to the adoption of solar energy technologies in the region. Results show that the climate and vegetation of a region contributes majorly to the variation of radiation and temperature. Inhomogeneity of data or results for locations in the same zones may be attributed to local meteorological conditions.

Dimensions

M. Irfan, R. M. Elavarasan, Y. Hao, M. Feng, & D. Sailan, “An assess-ment of consumers’ willingness to utilize solar energy in China: End-users’ perspective”, Journal of Cleaner Production, 292 (2021) 126008. https://doi.org/10.1016/j.jclepro.2021.126008.

H. Ero?glu, “Development of a novel solar energy need index for identifying priority investment regions: a case study and current status in Turkey”, Environment, Development and Sustainability, (2021) 1. https://doi.org/10.1007/s10668-021-01812-3.

A. A. Adenle, “Assessment of solar energy technologies in Africa opportunities and challenges in meeting the 2030 agenda and sustainable development goals”, Energy Policy, 137 (2020) 111180. https://doi.org/10.1016/j.enpol.2019.111180.

E. P. Agbo, C. O. Edet, T. O Magu, A. O. Njok, C. M. Ekpo & H. Louis, “Solar energy: A panacea for the electricity generation crisis in Nigeria”, Heliyon, 7 (2021) e07016.https://doi.org/10.1016/j.heliyon.2021.e07016.

J. Lee, & M. M. Shepley, “Benefits of solar photovoltaic systems for low-income families in social housing of Korea: Renewable energy applications as solutions to energy poverty”, Journal of Building Engineering, 28 (2020) 101016. https://doi.org/10.1016/j.jobe.2019.101016.

P. K. Adom, F. Amuakwa-Mensah, M. P. Agradi, & A. Nsabimana, “Energy poverty, development outcomes, and transition to green energy”, Renewable Energy, 178 (2021) 1337. https://doi.org/10.1016/j.renene.2021.06.120.

H. Tao, A. A. Ewees, A. O. Al-Sulttani, U. Beyaztas, M. M. Hameed, S. Q. Salih, & Z. M. Yaseen, “Global solar radiation prediction over North Dakota using air temperature: development of novel hybrid intelligence model”, Energy Reports, 7 (2021) 136. https://doi.org/10.1016/j.egyr.2020.11.033.

L. Yu, M. Zhang, L. Wang, Y. Lu, & J. Li, “Effects of aerosols and water vapour on spatial-temporal variations of the clear-sky surface solar radiation in China” Atmospheric Research, 248 (2021) 105162. https://doi.org/10.1016/j.atmosres.2020.105162.

O. Rejeb, M. S. Yousef, C. Ghenai, H. Hassan, & M. Bettayeb, “Investigation of a solar still behaviour using response surface methodology”, Case Studies in Thermal Engineering, 24 (2021) 100816. https://doi.org/10.1016/j.csite.2020.100816.

M. A. Yamasoe, N. M. E. Ros´ario, S. N. S. M. Almeida, & M. Wild, “Fifty-six years of surface solar radiation and sunshine duration over S˜ao Paulo, Brazil: 1961–2016” Atmospheric Chemistry and Physics, 21 (2021) 6593. https://doi.org/10.5194/acp-21-6593-2021.

¨U. A?gbulut, A. E. G¨urel, & Y. Bic¸en, “Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison”, Renewable and Sustainable Energy Reviews, 135 (2021) 110114. https://doi.org/10.1016/j.rser.2020.110114.

A. E. Lawin, M. Niyongendako, & C. Manirakiza, “Solar irradiance and temperature variability and projected trends analysis in Burundi”, Climate, 7 (2019) 83. https://doi.org/10.3390/cli7060083.

J. L. Lean. “Cycles and trends in solar irradiance and climate. Wiley interdisciplinary reviews: climate change” 1 (2010) 111. https://doi.org/10.1002/wcc.18.

L. Qian, C. Jacobi, J. McInerney, “Trends and solar irradiance effects in the mesosphere”, Journal of Geophysical Research: Space Physics, 124 (2019) 1343. https://doi.org/10.1029/2018JA026367.

B. Mendoza, “Total solar irradiance and climate”, Advances in Space Research, 35 (2005) 882. https://doi.org/10.1016/j.asr.2004.10.011.

W. Soon, D. R. Legates, “Solar irradiance modulation of Equator-to-Pole (Arctic) temperature gradients: Empirical evidence for climate variation on multi-decadal timescales”, Journal of Atmospheric and Solar-Terrestrial Physics, 93 (2013) 45. https://doi.org/10.1016/j.jastp.2012.11.015.

A. J. Aparicio, M. C. Gallego, M. Anton, J. M. Vaquero, “Relationship between solar activity and direct solar irradiance

in Madrid (1910–1929)”, Atmospheric Research, 235 (2020) 104766. https://doi.org/10.1016/j.atmosres.2019.104766.

A. Bhargawa, A. K. Singh, “Solar irradiance, climatic indicators and climate change–An empirical analysis” Advances in Space Research, 64 (2019) 271. https://doi.org/10.1016/j.asr.2019.03.018.

H. T. Abdulkarim, C. L. Sansom, K. Patchigolla, & P. King, ”Statistical and economic analysis of solar radiation and climatic data for the development of solar PV system in Nigeria”, Energy Reports 6 (2020) 309. https://doi.org/10.1016/j.egyr.2019.08.061.

V. N. Dike, T. C. Chineke, O. K. Nwofor, and U. K. Okoro, ”Evaluation of horizontal surface solar radiation levels in southern Nigeria”, Journal of renewable and sustainable energy, 2 (2011) 023101. https://doi.org/10.1063/1.3558871.

O. S. Ohunakin, M. S. Adaramola, O. M. Oyewola, & R. O. Fagbenle, ”Correlations for estimating solar radiation using sunshine hours and temperature measurement in Osogbo, Osun State, Nigeria”, Frontiers in Energy, 7 (2013) 214. https://doi.org/10.1007/s11708-013-0241-2.

M. S. Okundamiya, J. O. Emagbetere, & E. A. Ogujor. ”Evaluation of various global solar radiation models for Nigeria”, International Journal of Green Energy, 13 (2016) 505. https://doi.org/10.1080/15435075.2014.968921.

C. B. Do, “The multivariate Gaussian distribution. Section Notes” Lecture on Machine Learning, CS, 229 (2008).

M. N. Lang, G. J. Mayr, R. Stauffer, & A. Zeileis, “Bivariate Gaussian models for wind vectors in a distributional regression framework”, Advances in Statistical Climatology, Meteorology and Oceanography 5 (2019) 115. https://doi.org/10.5194/ascmo-5-115-2019.

E. P. Agbo, “The role of statistical methods and tools for weather forecasting and modeling” [Online First]. In Weather Forecassting. IntechOpen, https://doi.org/10.5772/intechopen.96854.

A. Mondal, S. Kundu, & A. Mukhopadhyay “Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa”, International Journal of Geology, Earth and Environmental Sciences 2 (2012) 70.

E. P. Agbo, C. M. Ekpo, “Trend Analysis of the Variations of Ambient Temperature Using Mann-Kendall Test and Sen’s Estimate in Calabar, Southern Nigeria” (2020) Researchgate Preprint. https://doi.org/10.13140/RG.2.2.26163.04644.

E. P. Agbo, C. M. Ekpo, “Trend Analysis of the Variations of Ambient Temperature Using Mann-Kendall Test and Sen’s Estimate in Calabar, Southern Nigeria” In Journal of Physics: Conference Series. IOP Publishing, 1734 (2021) p012016. https://doi.org/10.1088/1742-6596/1734/1/012016.

U. U. Alhaji, A. S. Yusuf, C. O. Edet, C. O. Oche, E. P. Agbo, “Trend analysis of temperature in Gombe state using Mann Kendall Trend test”, Journal of Scientific Research and Reports 20 (2018) 1. https://doi.org/10.9734/JSRR/2018/42029.

N. Khanmohammadi, H. Rezaie, & J. Behmanesh, “The effect of autocorrelation on the meteorological parameters trend” Meteorology and Atmospheric Physics 133 (2021) 565. https://doi.org/10.1007/s00703-020-00762-1.

E. P Agbo, C. M. Ekpo, C. O. Edet, “Analysis of the effects of meteorological parameters on radio refractivity, quivalent potential temperature and field strength via Mann-Kendall test”, Theor Appl Climatol., (2021). https://doi.org/10.1007/s00704-020-03464-1.

E. P. Agbo, E. B. Ettah, E. E. Eno, “The impacts of meteorological parameters on the seasonal, monthly and annual variation of radio refractivity” Indian J Phys (2020) https://doi.org/10.1007/s12648-020-01711-9.

O. O. Soneye, M. A. Ayoola, I. A. Ajao, & O. O. Jegede. ”Diurnal and seasonal variations of the incoming solar radiation flux at a tropical station, Ile-Ife, Nigeria”, Heliyon, 5 (2019) e01673. https://doi.org/10.1016/j.heliyon.2019.e01673.

O. S. Ohunakin, M. S. Adaramola, O. M. Oyewola, O. J. Matthew, & R. O. Fagbenle. ”The effect of climate change on solar radiation in Nigeria”, Solar Energy, 116 (2015) 272. https://doi.org/10.1016/j.solener.2015.03.027.

O. M. Akinbode, A. O. Eludoyin, O. A. Fashae. ”Temperature and relative humidity distributions in a medium-size administrative town in south-west Nigeria”, Journal of environmental management, 87 (2008) 95. https://doi.org/10.1016/j.jenvman.2007.01.018.

R. Knutti, & G, C. Hegerl. ”The equilibrium sensitivity of the Earth’s temperature to radiation changes”, Nature Geoscience, 1 (2008) 735. https://doi.org/10.1038/ngeo337.

M. Wild, D. Folini, F. Henschel, N. Fischer, & B. M¨uller. ”Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems”, Solar Energy, 116 (2015) 12. https://doi.org/10.1016/j.solener.2015.03.039.

D. J. Mildrexler, M. Zhao, and S. W. Running. ”A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests”, Journal of Geophysical Research: Bio-geosciences, 116 (2011). https://doi.org/10.1029/2010JG001486.

Okono_et_al

Published

2022-08-14

How to Cite

Statistical Analysis and Distribution of Global Solar Radiation and Temperature Over Southern Nigeria. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 588. https://doi.org/10.46481/jnsps.2022.588

Issue

Section

Original Research

How to Cite

Statistical Analysis and Distribution of Global Solar Radiation and Temperature Over Southern Nigeria. (2022). Journal of the Nigerian Society of Physical Sciences, 4(3), 588. https://doi.org/10.46481/jnsps.2022.588