The statistical ensemble of q-deformed hyperbolic modified P\"oschl-Teller potential for certain diatomic molecules through Euler-Maclaurin  approach

Authors

  • O. J. Olusesi Department of Physics, University of Ilorin, Ilorin, Kwara State, Nigeria
  • K. J. Oyewumi Department of Physics, University of Ilorin, Ilorin, Kwara State, Nigeria
  • W. A. Yahya Department of Physics and Materials Science, Kwara State University, Malete, Kwara State, Nigeria

Keywords:

q-deformed hyperbolic modified P¨oschl-teller potential, Euler-Maclaurin, Partition Function, Nikiforov-Uvarov approach

Abstract

The statistical properties are essentially needed to understand the macroscopic behaviours of atomic molecules, which is a crucial aspect of physics and chemistry research. In this work, q-deformed hyperbolic modified P\"oschl-teller was used to obtain the statistical properties of $\mathrm{H_{2}}$, $\mathrm{HCl}$, $\mathrm{LiH}$, and $\mathrm{CO}$ using the energy eigenvalues that were gotten from the potential. The Nikiforov-Uvarov approach was used to elucidate the Schr\"odinger equation using the potential, while the partition functions were obtained through the Euler-MacLaurin technique. The result shows that both the partition functions and each of the statistical properties increase with an increase in the Boltzmann factor. The analytical results of vibrational internal energy, vibrational entropy, vibrational free energy, and vibrational specific heat capacity were obtained for the limit $0<q\leq 1$. The study comes up with a new way to predict how potential deformation will affect the thermodynamic properties of diatomic molecules and the existence critical temperature which explain the phase transition of the diatomic particles. It also gives us useful information about the statistical properties of diatomic molecules, which helps us understand how they behave at the macro level. This is a big step forward for molecular physics.

Dimensions

[1] A. Boumali, “The statistical properties of q-deformed Morse potential for some diatomic molecules via Euler-MacLaurin method in one dimension”, Journal Mathematical Chemistry 56 (2018) 1656. https://doi.org/10.1007/s10910-018-0879-4.

[2] K. Chabi & A. Boumali, “Thermal properties of three dimensional Morse potential for some diatomic molecules via Euler-Maclaurin approximation”, Revista Mexicana de F´ısica 66 (2019) 110. http://dx.doi.org/10.31349/RevMexFis.66.110.

[3] A. A. Araujo Filho & R.V. Maluf, “Thermodynamic properties in higher-derivative electrodynamics”, Brazilian Journal Physics 51 (2021) 820. https://link.springer.com/article/10.1007/s13538-021-00880-0.

[4] C. A. Onate, I. B. Okon, J. A. Akinpelu, O. O. Ajani, O. A. Adedewe & B. B. Deji-Jinadu, “Shannon entropy and thermodynamic properties of an inversely quadratic yakawa potential gaseous carbon disulfide”, Journal of the Nigerian Society of Physical Sciences 100 (2024) 4. https://doi.org/10.46481/jnsps.2024.2134.

[5] F. Nutku, E. Aydiner & K. D. Sen, “Complexity of HCl and H2 molecules under q-deformed Morse potential”, Indian Journal of Physics 96 (2021) 103. https://link.springer.com/article/10.1007/s12648-021-02028-x.

[6] R. Horchani & H. Jeslassi, “Accurate and general model to predict molar entropy for diatomic molecules”, South African Journal of Chemical Engineering 33 (2020) 68. https://doi.org/10.1016/j.sajce.2020.07.001.

[7] S. C. Jia, T. Y. Wang, S. L. Wei, W. C. Wang, L. X. Peng & H. L. Zhang, “Predictions of entropy and gibbs energy for Carbonyl Sulfide”, ACS Omega 4 (2019) 20000. https://pubs.acs.org/doi/10.1021/acsomega.9b02950.

[8] A. Ghobrini, H. Boukabcha & I. Ami , “Non-relativistic treatment of q-deformed modified Poschel Teller potential via path integral approach”, Indian Journal Physics 98 (2023) 433. https://doi.org/10.1007/s12648-023-02850-5.

[9] R. Khordad & J. A. Ghanbari, “Thermodynamic properties of several substances using Tietz-Hua potential”, Indian Journal of Physics 96 (2022) 1413. https://link.springer.com/article/10.1007/s12648-021-02086-1.

[10] F. Wang, K. Liu, X. Zhang, Z. Wang, M. Qin, Q. Liao & P. Lu, “Attosecond streaking spectrum in the photoionization of the hydrogen molecular ion”, Physical Review A 100 (2019) 291. https://doi.org/10.1103/PhysRevA.100.043405.

[11] S. Varro, S. Hack, G. Paragi, P. F ´ oldi, I. F. Barna & A. Czirj ¨ ak, “Di-atomic molecule in a strong infrared laser field: level-shifts and bondlength change due to laser-dressed Morse potential”, IOP Publishing 25(2023) 7. https://dx.doi.org/10.1088/1367-2630/acde9e.

[12] X. L. Peng, R. Jiang, C. S. Jia, L. H. Zhang & Y. L. Zhao, “Gibbs free energy of gaseous phosphorus dimer”, Chemical Engineering Science 190 (2018) 122. https://doi.org/10.1016/j.ces.2018.06.027.

[13] M. L. Strekalov, “The thermodynamic properties of diatomic gases. A rigorous analytical approach”, 8 (2024) 100444.https://doi.org/10.1016/j.chphi.2023.100444.

[14] C. S. Jia, C. W. Wang L. H. Zhang, X. L. Peng, H. M. Tang & R. Zeng, “Enthalpy of gaseous phosphorus dimer”, Chemical Engineering Science 183 (2018) 26. https://doi.org/10.1016/j.ces.2018.03.009.

[15] R. Jiang, C. S. Jia, Y. Q. Wang, X. L. Peng & L. H. Zhang, “Prediction of enthalpy for the gases CO, HCl, and BF”, Chemical Physics Letters 715 (2019) 186. https://doi.org/10.1016/j.cplett.2018.11.044.

[16] S. U. Okorie, E. E. Ibekwe, N. A. Ikot, C. M. Onyeaju & E. O. Chukwuocha, “Thermodynamic properties of the modified Yukawa potential”, Journal Korean Physics Society 73 (2018) 1211. https://doi.org/10.3938/jkps.73.1211.

[17] D. Nath & A. K. Roy, “Ro-vibrational energy and thermodynamic properties of molecules subjected to Deng-Fan potential through an improved approximation”, International Journal Quantum Chemistry 121 (2021) 26616. https://doi.org/10.1002/qua.26616.

[18] A. N. Ikot, U. S. Okorie, G. Osobonye, P. O. Amadi, C. O. Edet, M. J. Sithole, G. J. Rampho & R.Sever, “Superstatistics of Schrodinger equation with pseudo-harmonic potential in external magnetic and Aharanov Bohm fields”, Heliyon 6 (2020) 824. https://doi.org/10.1016/j.heliyon.2020.e03738.

[19] J. Wang, X. Peng, L. Zhang, C. Wang & C. Jia, “Entropy of gaseous boron monobromide”, Chemical Physics Letters 686 (2017) 131. https://www.sciencedirect.com/science/article/abs/pii/S0009261417308096.

[20] X. Y. Chen, J. Li & C. S. Jia, “Thermodynamic properties of gaseous carbon disulfide”, ACS Omega 4 (2019) 16121. https://pubs.acs.org/doi/10.1021/acsomega.9b02303.

[21] B. Wu, Quantum Mechanics, Springer Nature, New York, 2023, pp. 156–163. https://doi.org/10.1007/978-981-19-7626-1.

[22] L. G. Peralte, M. F. Lozada, H. Farooq, G. Eichman, A. Singh & G. Prime, Relativistic and Non-Relativistic Quantum Mechanics, Springer Nature, Switzerland, 2023, pp. 564. https://doi.org/10.1007/978-3-031-37073-1.

[23] S. Sargolzaeipor, H. Hassanabadi, W. S. Chung & A. N. Ikot, “q Deformed oscillator algebra in fermionic and bosonic limits”, Pramana 93 (2019) 68. https://doi.org/10.1007/s12043-019-1833-0.

[24] N. Hatami, J. Naji & M. Pananeh, “Analytical solutions of the Klein Gordon equation for the deformed generalized Deng-Fan potential plus deformed Eckart potential”, European Physical Journal Plus 134 (2019) 90. https://doi.org/10.1140/epjp/i2019-12451-3.

[25] K. Jeffery, R. Pollack & C. Rovelli, “On the statistical mechanics of life: Schrodinger revisited”, Switzerland ¨ 12 (2019) 21. https://doi.org/10.48550/arXiv.1908.08374. [26] R. Horchani & H. Jelassi, “Accurate and general model to predict molar entropy for diatomic molecules”, South African Journal of Chemical Engineering 33 (2020) 103. https://doi.org/10.1016/j.sajce.2020.07.001.

[27] R. Horchani & H. Jelassi, “Effect of quantum corrections on thermodynamic properties for dimers”, Chemical Physics 532 (2020) 301. https://doi.org/10.1016/j.chemphys.2020.110692.

[28] Z. Ocak, H. Yanar, M. Salti & O. Aydogdu, “Relativistic spinless energies and thermodynamic properties of sodium dimer molecule”, Chemical Physics 513 (2018) 252. https://doi.org/10.1016/j.chemphys.2018.08.015.

[29] J. Wang, C. S. Jia, C. J. Li, X. L. Peng, L. H. Zhang & J. Y. Liu, “Thermodynamic properties for Carbon Dioxide”, ACS Omega 10 (2019) 193. https://pubs.acs.org/doi/10.1021/acsomega.9b02488.

[30] O. J. Oluwadare & K. J. Oyewumi, “Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential”, European Physical Journal Plus 133 (2018) 422. https://doi.org/10.1140/epjp/i2018-12210-0.

[31] R. Liang, Y. Liu & F. Li, “Thermodynamic properties of diatomic CO, CN, C2 and CO+ in CO2-N2 plasmas”, 121 (2023) 5. https://doi.org/10.1080/00268976.2023.2188974.

[32] A. Ghanbari & R. Khordad, “ Theoretical prediction of thermodynamic properties of N2 and CO using pseudo harmonic and Mie-type potentials”, Chemical Physics 534 (2020) 110732. https://doi.org/10.1016/j.chemphys.2020.110732.

[33] O. J. Oluwadare, K. J. Oyewumi & T. O. Abiola, “Thermodynamic properties of some diatomic molecules confined by an harmonic oscillating system”, Indian Journal Physics 96 (2022) 1921. https://doi.org/10.1007/s12648-021-02139-5.

[34] A. M. Obalalu, Isaac Oluwafemi Faramade, O. J. Olusesi, S. A. Salaudeen, Brijesh Prasad & Mohit Bajaj, “Thermal performance analysis of ternary hybrid nanofluids in solar-powered ships using parabolic trough solar collectors”, E3S Web of Conferences 591 (2024) 05008. https://doi.org/10.1051/e3sconf/202459105008.

[35] Z. Ocak, H. Yanar, M. SaltI & O. Aydogdu, “Relativistic spinless energies and thermodynamic properties of sodium dimer molecule”, Chemical Physics 513 (2018) 252. https://doi.org/10.1016/j.chemphys.2018.08.015.

Variation of the potential for some values of q (0<q<1).

Published

2025-05-01

How to Cite

The statistical ensemble of q-deformed hyperbolic modified P\"oschl-Teller potential for certain diatomic molecules through Euler-Maclaurin  approach. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2352. https://doi.org/10.46481/jnsps.2025.2352

Issue

Section

Physics & Astronomy

How to Cite

The statistical ensemble of q-deformed hyperbolic modified P\"oschl-Teller potential for certain diatomic molecules through Euler-Maclaurin  approach. (2025). Journal of the Nigerian Society of Physical Sciences, 7(2), 2352. https://doi.org/10.46481/jnsps.2025.2352