Development of Predictive Model for Radon-222 Estimation in the Atmosphere using Stepwise Regression and Grid Search Based-Random Forest Regression
Keywords:
radon, machine learning, meteorological parameters, atmosphereAbstract
This work develops predictive models for estimating radon (222Rn) activity concentration in the atmosphere using novel grid search based random forest regression (GS-RFR) and stepwise regression (SWR). The developed models employ meteorological parameters which include the temperature, pressure, relative and absolute humidity, wind speed and wind direction as descriptors. Experimental data of radon concentration and meteorological parameters from two observatories of the Korea Polar Research Institute in Antarctica (King Sejong and Jang Bogo) have been employed in this work. The performance of the developed models was assessed using three different performance measuring parameters. On the basis of root mean square error (RMSE), the GS-RFR shows better performance over the SWR. An improvement of 64.09 % and 15.19 % was obtained on the training and test datasets, respectively at King Sejong station. At the Jang Bogo station, an improvement of 75.04 % and 28.04 % was obtained on the training and test datasets, respectively. The precision and robustness of the developed models would be of significant interest in determining the concentration of radon (222Rn) activity concentration in the atmosphere for various physical applications especially in regions where field measuring equipment for radon is not available or measurements have been interrupted.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Journal of the Nigerian Society of Physical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Osowomuabe Njama-Abang, Denis U. Ashishie, Paul T. Bukie, Addressing class imbalance in lassa fever epidemic data, using machine learning: a case study with SMOTE and random forest , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- Idongesit E. Eteng, Udeze L. Chinedu, Ayei E. Ibor, A stacked ensemble approach with resampling techniques for highly effective fraud detection in imbalanced datasets , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 1, February 2025
- Emmanuel Gbenga Dada, Aishatu Ibrahim Birma, Abdulkarim Abbas Gora, Ensemble machine learning algorithm for cost-effective and timely detection of diabetes in Maiduguri, Borno State , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 4, November 2024
- Christopher Ifeanyi Eke, Kholoud Maswadi, Musa Phiri, Mulenga Mwege, Mohammad Imran, Dekera Kenneth Kwaghtyo, Akeremale Olusola Collins, Effective tweets classification for disaster crisis based on ensemble of classifiers , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- Sherifdeen O. Bolarinwa, Eli Danladi, Andrew Ichoja, Muhammad Y. Onimisia, Christopher U. Achem, Synergistic Study of Reduced Graphene Oxide as Interfacial Buffer Layer in HTL-free Perovskite Solar Cells with Carbon Electrode , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Constantin Falk, Tarek El Ghayed , Ron van de Sand, Jörg Reiff-Stephan, A Data-Driven Approach Towards the Application of Reinforcement Learning Based HVAC Control , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 1, February 2023
- Olumide S. Adesina, Adedayo F. Adedotuun, Kayode S. Adekeye, Ogbu F. Imaga, Adeleke J. Adeyiga, Toluwalase J. Akingbade, On logistic regression versus support vectors machine using vaccination dataset , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 1, February 2024
- Nneka Ernestina Richard-Nnabu, Chinagolum Ituma, Henry Friday Nweke, Convolutional neural networks method for folded naira currency denominations recognition and analysis , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 4, November 2024
- Lek Ming Lim, Yang Lu, Ahmad Sufril Azlan Mohamed, Majid Khan Majahar Ali, Data safety prediction using YOLOv7+G3HN for traffic roads , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- Christian N. Nwaeme, Adewale F. Lukman, Robust hybrid algorithms for regularization and variable selection in QSAR studies , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 4, November 2023
You may also start an advanced similarity search for this article.

