Development of Predictive Model for Radon-222 Estimation in the Atmosphere using Stepwise Regression and Grid Search Based-Random Forest Regression
Keywords:
radon, machine learning, meteorological parameters, atmosphereAbstract
This work develops predictive models for estimating radon (222Rn) activity concentration in the atmosphere using novel grid search based random forest regression (GS-RFR) and stepwise regression (SWR). The developed models employ meteorological parameters which include the temperature, pressure, relative and absolute humidity, wind speed and wind direction as descriptors. Experimental data of radon concentration and meteorological parameters from two observatories of the Korea Polar Research Institute in Antarctica (King Sejong and Jang Bogo) have been employed in this work. The performance of the developed models was assessed using three different performance measuring parameters. On the basis of root mean square error (RMSE), the GS-RFR shows better performance over the SWR. An improvement of 64.09 % and 15.19 % was obtained on the training and test datasets, respectively at King Sejong station. At the Jang Bogo station, an improvement of 75.04 % and 28.04 % was obtained on the training and test datasets, respectively. The precision and robustness of the developed models would be of significant interest in determining the concentration of radon (222Rn) activity concentration in the atmosphere for various physical applications especially in regions where field measuring equipment for radon is not available or measurements have been interrupted.
Published
How to Cite
Issue
Section
Copyright (c) 2021 Journal of the Nigerian Society of Physical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Gabriel James, Anietie Ekong, Etimbuk Abraham, Enobong Oduobuk, Peace Okafor, Analysis of support vector machine and random forest models for predicting the scalability of a broadband network , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- F. O. Aweda, J. A. Akinpelu, T. K. Samson, M. Sanni, B. S. Olatinwo, Modeling and Forecasting Selected Meteorological Parameters for the Environmental Awareness in Sub-Sahel West Africa Stations , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Muhammad Dahiru Liman, Salamatu Ibrahim Osanga, Esther Samuel Alu, Sa'adu Zakariya, Regularization Effects in Deep Learning Architecture , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- Orlunta, Aloysius Ndubisi, Briggs-Kamara, Margaret Apaem, Sigalo, Friday Barikpe, Iyeneomie, Tamunobereton-Ari, Analysis of Indoor Radon Level and its Health Risks Parameters in Three Selected Towns in Port Harcourt, Rivers State, Nigeria , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 3, August 2021
- L. G. Salaudeen, D. GABI, M. Garba, H. U. Suru, Deep convolutional neural network based synthetic minority over sampling technique: a forfending model for fraudulent credit card transactions in financial institution , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- A. B Yusuf, R. M Dima, S. K Aina, Optimized Breast Cancer Classification using Feature Selection and Outliers Detection , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Umaru C. Obini, Chukwu Jeremiah, Sylvester A. Igwe, Development of a machine learning based fileless malware filter system for cyber-security , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 4, November 2024
- Emmanuel C. Ukekwe, Adaora A. Obayi, Akpa Johnson, Daniel A. Musa, Jonathan C. Agbo, Optimizing data and voice service delivery for mobile phones based on clients' demand and location using affinity propagation machine learning , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 2, May 2025
- P. O. Odion, M. N. Musa, S. U. Shuaibu, Age Prediction from Sclera Images using Deep Learning , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Philemon Uten Emmoh, Christopher Ifeanyi Eke, Timothy Moses, A feature selection and scoring scheme for dimensionality reduction in a machine learning task , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 1, February 2025
You may also start an advanced similarity search for this article.

