Optimizing data and voice service delivery for mobile phones based on clients' demand and location using affinity propagation machine learning
Keywords:
Telecommunication, Clustering, Machine-learning, Subscription, Tariff plansAbstract
Network service requests for voice and Internet may differ across locations. Network service providers are encouraged to conduct a quarterly check to identify the service plan that is mostly sought for in a particular area of coverage to improve the quality of service through promotions, advertisements and awareness talks. In this work, a model that identifies and recommends the location service plan for network providers is proffered. The 3-task model extracts data as quarterly averages on voice and Internet subscriptions it goes ahead to cluster the extracted data using affinity propagation machine learning and classifies the clusters into linguistic variables using the mean of the respective clusters. Using a dataset obtained from the Nigerian Bureau of Statistics on mobile telecommunication on the four major network operators of Mtn, Airtel, Glo and 9Moile for three quarters in 2021, the model was able to identify states with heavy as well as low subscription rates (voice and Internet) across the country. The more urbanized states preferred internet subscription over voice calls thereby revealing the weakness and strength of each network provider across the states. Mtn had the best Davies-Bouldin Index performance measure of 0.26, Glo had the best silhouette score of 0.66 while 9Mobile had the best Calinski-Harabasz Index metric score of 805.30.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Emmanuel C. Ukekwe, Adaora A. Obayi, Akpa Johnson, Daniel A. Musa, Jonathan C. Agbo

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Chinedu L. Udeze, Idongesit E. Eteng, Ayei E. Ibor, Application of Machine Learning and Resampling Techniques to Credit Card Fraud Detection , Journal of the Nigerian Society of Physical Sciences: Volume 4, Issue 3, August 2022
- Nahid Salma, Majid Khan Majahar Ali, Raja Aqib Shamim, Machine learning-based feature selection for ultra-high-dimensional survival data: a computational approach , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
- Unyime Ufok Ibekwe, Uche M. Mbanaso, Nwojo Agwu Nnanna, Umar Adam Ibrahim, A machine learning sentiment classification of factors that shape trust in smart contracts , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 1, February 2025
- O. E. Ojo, A. Gelbukh, H. Calvo, O. O. Adebanji, Performance Study of N-grams in the Analysis of Sentiments , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Silifat Adaramaja Abdulraheem, Salisu Aliyu, Fatima Binta Abdullahi, Hyper-parameter tuning for support vector machine using an improved cat swarm optimization algorithm , Journal of the Nigerian Society of Physical Sciences: Volume 5, Issue 4, November 2023
- Gabriel James, Ime Umoren, Anietie Ekong, Saviour Inyang, Oscar Aloysius, Analysis of support vector machine and random forest models for classification of the impact of technostress in covid and post-covid era , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- David Opeoluwa Oyewola, Emmanuel Gbenga Dada, Juliana Ngozi ndunagu, Terrang Abubakar Umar, Akinwunmi S.A, COVID-19 Risk Factors, Economic Factors, and Epidemiological Factors nexus on Economic Impact: Machine Learning and Structural Equation Modelling Approaches , Journal of the Nigerian Society of Physical Sciences: Volume 3, Issue 4, November 2021
- Gabriel James, Anietie Ekong, Etimbuk Abraham, Enobong Oduobuk, Peace Okafor, Analysis of support vector machine and random forest models for predicting the scalability of a broadband network , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 3, August 2024
- Muhammad Dahiru Liman, Salamatu Ibrahim Osanga, Esther Samuel Alu, Sa'adu Zakariya, Regularization Effects in Deep Learning Architecture , Journal of the Nigerian Society of Physical Sciences: Volume 6, Issue 2, May 2024
- Mokhtar Ali, Abdelkerim Souahlia, Abdelhalim Rabehi, Mawloud Guermoui, Ali Teta, Imad Eddine Tibermacine, Abdelaziz Rabehi, Mohamed Benghanem , A robust deep learning approach for photovoltaic power forecasting based on feature selection and variational mode decomposition , Journal of the Nigerian Society of Physical Sciences: Volume 7, Issue 3, August 2025
You may also start an advanced similarity search for this article.

