Zn(II) and Fe(II) complexes of  2,4-dinitro-N-[(Z)-[(E)-3-(2-nitrophenyl)prop-2-enylidene] amino] aniline: synthesis, characterization and In Silico SARS-CoV-2 inhibition studies

Authors

  • K. O. Eberendu Department of Chemistry, Spiritan University, Nneochi, Abia, Nigeria
  • J. I. Iheanyichukwu Department of Chemistry, Michael Okpara University of Agriculture, Nigeria
  • O. M. Mac-kalunta Department of Chemistry, Michael Okpara University of Agriculture, Nigeria
  • C. I. Nwankwo Department of Biochemistry, Michael Okpara University of Agriculture, Nigeria
  • I. E. Otuokere Department of Chemistry, Michael Okpara University of Agriculture, Nigeria
  • J. C. Nnaji Department of Chemistry, Michael Okpara University of Agriculture, Nigeria

Abstract

The hydrazones and their metal complexes find application as anticancer, antibacterial, chemotherapeutic, antioxidants, and antiproliferative agents, among several other uses. In our quest for possible bioactive hydrazone and complexes, we have synthesized novel Zn(II) and Fe(II) metal complexes of 2,4-dinitro-N-[(Z)-[(E)-3-(2-nitro-phenyl) prop-2-enylidene] amino. The octahedral geometry of the complexes was further supported by the spectral methods, with coordination proceeding through two nitro groups, two chloride atoms, an NH group, and an azomethine nitrogen atom. From the fact noted, we can now confirm that Zn(II) and Fe(II) can coordinate DNEAA to form complexes of high stability. The molecular docking study showed binding energies to be above -9.6 Kcal/mol. These results recommend biological, preclinical, and clinical trials take place, with the target being SARS-CoV-2 protease

Dimensions

[1] K. Mishra, S. Goswami, M.V. Kumudhavalli, K. Saini, N. Pal, N. Sharma & P. Pandey, “Hydrazones and their metal complexes: A short review on their biological potential”, International Journal of Research in Pharmaceutical Sciences 11 (2020) 1440. https://doi.org/10.26452/ijrps.v11iSPL4.4319.

[2] T. Arora, J. Devi, A. Boora & S. Rani,“Synthesis and characterization of hydrazones and their transition metal complexes: antimicrobial, antituberculosis and antioxidant activity”, Research in Chemical Intermediate 49 (2023) 4819. https://doi.org/10.1007/s11164-023-05116-1.

[3] S. K. Mondal, W. Chenglin, F. C. Nwadire, A. Rownaghi, A. Kumar, Y. Adewuyi & M.U. Okoronkwo, “Examining the effect of a chitosan biopolymer on alkali-activated inorganic material for aqueous Pb (II) and Zn (II) sorption”, Langmuir 38 (2022) 903. https://doi.org/10.1021/acs.langmuir.1c01829.

[4] I. E. Otuokere, J. G. Ohwimu, K. C. Amadi, C. O. Alisa, F. C. Nwadire, O. U. Igwe, A. A. Okoyeagu & C. M. Ngwu,“Synthesis, characterization and molecular docking studies of Mn (II) complex of sulfathiazole”, Journal of Nigerian Society of Physical Sciences 1 (2019) 95. https://doi.org/10.46481/jnsps.2019.20.

[5] I. E. Otuokere, D. O. Okorie, B. C. Asogwa, O. K. Amadi, l. O. C. Ubani & F. C. Nwadire, “Spectroscopic and Coordination Behavior of Ascorbic Acid Towards Copper (II) Ion”, Research in Analytical and Biological Chemistry 1 (2017) 1. https://dx.doi.org/10.4314/jasem.v26i1.12.

[6] I. O. Edozie, O. J. Godday, A. K. Chijioke, I. O. Uchenna & N. F. Chigozie, “Synthesis, characterization and molecular docking studies of Co (II) metal complex of sulfathiazole”, Bulletin of Chemical Society of Ethiopia 34 (2020) 83. https://doi.org/10.4314/bcse.v34i1.8.

[7] I. E. Otuokere, L. O. Okpara, K. C. Amadi, C. O. Alisa, A. Okoyeagu & F. C. Nwadire, “4-N-(7-Chloroquinolin-4-yl)-1-N, 1-N-diethyl petane-1, 4diamine Ti Complex: Synthesis and Characterization”, BP International (2021) 142. https://doi.org/10.9734/bpi/tipr/v3/1827E.

[8] J. Godwin, F. C. Nwadire & B. A. Uzoukwu, “Extraction of Ni (II) Ions into CHCl3 Solution of n, n’-Ethylenebis (4-Butanoyl-2, 4-Dihydro5-Methyl-2-Phenyl-3h-Pyrazol-3-One Imine) Schiff Base”, European Chemical Bulletin 1 (2012) 269. https://doi.org/10.17628/ECB.2012.1.269-273.

[9] I. E. Otuokere, K. C. Nwaiwu, F. C. Nwadire & O. U. Akoh, “Synthesis and characterization of Cr (III)-ascorbic acid complex”, Journal of Applied Science and Environmental Management 26 (2022) 75. https://doi.org/10.4314/jasem.v26i1.12.

[10] I. E. Otuokere, L. O. Okpara, K. C. Amadi, N. Ikpo, G. U. Okafor & F. C. Nwadire, “Synthesis, Characterization And Complexation Of Cr(III) Ion Using Chloroquine Diphosphate”, Journal of Chemical Society of Nigeria 49 (2019) 107. https://journals.chemsociety.org.ng/index.php/jcsn/article/view/254.

[11] O. K. Amadi, I. E. Otuokere & C. F. Bartholomew, “Synthesis, Characterization, in vivo Antimalarial Studies and Geometry Optimization of Lumefantrine/Artemether Mixed Ligand Complexes”, Research Journal of Pharmaceutical Dosage Forms and Technology 7 (2015) 59. https://doi.org/10.5958/0975-4377.2015.00009.9.

[12] I. E. Otuokere, K. C. Nwaiwu, F. C. Nwadire & O. U. Akoh, “Synthesis and characterization of Cr (III)-ascorbic acid complex”, Journal of Applied Science and Environmental Management 26 (2022) 75. https://doi.org/10.4314/jasem.v26i1.12.

[13] I. E. Otuokere, B. C. Asogwa, F. C. Nwadire, O. U. Akoh, C. I. Nwankwo, P. O. Emole & E. E. Elemike, “Biological Potentials of Some Schiff Bases and Their Chelates: A Short Review”, in Novelties in Schiff Bases, Takashiro Akitsu (Ed.), IntechOpen, London, United Kingdom, 2024, pp. 140-158. https://doi.org/10.5772/intechopen.114862.

[14] F. C. Nwadire, C. O. Ubani, I. E. Otuokere, O. U. Igwe, J. N. Chilaka & H. O. Chukwuemeka, “Effects of acids, anions and auxiliary complexing species on the distribution of bivalent nickel in liquid-liquid extraction”, Journal of Chemical Society of Nigeria 44 (2019) 661. https://journals.chemsociety.org.ng/index.php/jcsn/article/view/319.

[15] N. P. Belskaya, W. Dehaen, V. A. Bakulev, “Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions”, Archive of Organic Chemistry 1 (2010) 275. http://dx.doi.org/10.3998/ark.5550190.0011.108.

[16] N. M. Abdul Khader Jailani, A. Xavier, A. Ramu, “Synthesis, Spectroscopic Characterization, DNA Binding Ability and Biological Activities of Transition Metal Complexes Containing Tridentate Schiff base”, Materials Today: Proceedings 5 (2018) 22200. https://doi.org/10.1016/j.matpr.2018.06.585.

[17] J. Wahbeh & S. Milkowski, “The Use of Hydrazones for Biomedical Applications”, SLAS Technology 24 (2019) 161. https://doi.org/110.1177/2472630318822713.

[18] X. Wang, Y. Jaun, S. LI, Z. Guoping & S. Baoan, “Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)one”, European Journal of Medicinal Chemistry 22 (2014) 65. https://doi.org/10.1016/j.ejmech.2014.02.053.

[19] P. Zhai, Y. Ding, X. Wu, J. Long, Y. Zhong & Y. Li, “The epidemiology, diagnosis and treatment of COVID-19”, International Journal of Antimicrobial Agents 55 (2020) 105955. https://doi.org/10.1016/j.ijantimicag.2020.105955.

[20] Y. Guo, Q. D. Cao, Z. S. Hong, Y. Y. Tan, S. D.Chen, H.J. Jin, K.S. Tan, D.Y. Wang & Y. Yan, “The origin, transmission, and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status”, Mil Medicinal Research 7 (2020) 11. https://doi.org/10.1186/s40779-020-00240-0.

[21] J. H. Beigel, K. M.Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E. Hohmann, H. Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R. W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T. F. Patterson, R. Paredes, D. A. Sweeney, W. R. Short, G. Touloumi, “Remdesivir for the Treatment of Covid-19 Final Report”, The New England Journal of Medicine 383 (2020) 1813. https://doi.org/10.1056/NEJMoa2007764.

[22] A. Y. Lai, L. Lee, M. P. Wang, Y. Feng, T. T. Lai, L. M. Ho, V. S. Lam, M. S. Ip & T. H. Lam, “Mental Health Impacts of the COVID-19 Pandemic on International University Students, Related Stressors, and Coping Strategies”, Frontiers Psych 11 (2020) 584240. https://doi.org/10.3389/fpsyt.2020.584240.

[23] C. A. Devaux, J. M. Rolain, P. Colson & D. Raoult, “New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?”, International Journal of Antimicrobial Agent 55 (2020) 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938.

[24] F. Touret & X. de Lamballerie, “Of chloroquine and COVID-19”, Antiviral. Research 177 (2020) 104762. https://doi.org/10.1016/j.antiviral.2020.104762

[25] M. Al-Bari, “Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases”, Pharmacology Research Perspective 5 (2017) 293. https://doi.org/10.1002/prp2.293.

[26] M. E. Rebeaud & M. F. Zores, “SARS-CoV-2 and the use of chloroquine as an Antiviral Treatment, “Frontiers in Medicine 7 (2020) 7. https://doi.org/10.3389/fmed.2020.00184.

[27] J. A. Al-Tawfiq, A. H. Al-Homoud & Z. A. Memish, “Remdesivir as a possible therapeutic option for the COVID-19”, Travel Medicinal Infectious Diseases 10 (2020) 16. https://doi.org/10.1016/j.tmaid.2020.101615.

[28] J. S. Morse, T. Lalonde, S. Xu & W. R. Liu, “Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV”, European Journal of Chemistry and Biology 21 (2020) 730. https://doi.org/10.1002/cbic.202000047.

[29] T. P. Sheahan, A. C. Sims, S. Zhou, R. L. Graham, A. J. Pruijssers, M. L. Agostini, S. R. Leist, A. Schafer, L. J. Dinnon, J. D. Stevens,¨ X. Chappell, T. M. Lu, A. S. Hughes, C. S. George, S. A. Hill, S. A. Montgomery, A. J. Brown, G. R. Bluemling, M. G. Natchus, M. Saindane & R. S. Baric, “An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice”, Science trans. Medicine 12 (2020) 5883. https://doi.org/10.1126/scitranslmed.abb5883.

[30] D. He, S. Zhao, X. Xu, Q. Lin, Z. Zhuang, P. Cao, M. H. Wang, Y. Lou, L. Xiao, Y. Wu & L. Yang, “Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control”, BMC Public Health 20 (2020) 1558. https://doi.org/10.1186/s12889-020-09624-2.

[31] Y. S. Boriskin, I. A. Leneva, E. I. Pecheur & S. J. Polyak, “Ar-´ bidol: a broad-spectrum antiviral compound that blocks viral fusion”, Current Medicinal Chemistry 15 (2008) 997. https://doi.org/10.2174/092986708784049658.

[32] I .E. Otuokere & A. J. Chinweuba, “Synthesis, Characterization and fungicidal activity of 3-chloro-4-methyl-N-[(1E)-1phenylethylidene]aniline ligand and its metal complexes”, Journal of Chemical and Pharmaceutical Research 6 (2011) 905. https://www.jocpr.com/articles/synthesis-characterization-andfungicidal-activity.

[33] M. J. Prushan, “Lab Manual Advanced Inorganic Chemistry Laboratory”, Department of Chemistry and Biochemistry, La Salle University, Philadelphia, Pennsylvania, 2003. http://www1.lasalle.edu/?prushan/Inorganic%20Lab%20Manual.pdf

[34] M. Bouhdada, M. El Amane, H. El Hamdani & Z. Khiya, “Synthesis, characterization, biological evaluation and molecular docking studies of salicylidene-aniline and their metal mixed ligand complexes with caffeine”, Journal of Molecular Structure 1271 (2023) 134026. https://doi.org/10.1016/j.molstruc.2022.134026.

[35] B. A. Ismail, D. A. Nassar, Z. H. Abd El-Wahab & O. A. M Ali, “Synthesis, characterization, thermal, DFT computational studies and anticancer activity of furfural-type Schiff base complexes”, Journal of Molecular Structure 1227 (2021) 129393. https://doi.org/10.1016/j.molstruc.2020.129393.

[36] P. A. Khalf-Alla, S. S. Hassan & M. M. Shoukry, “Complex formation equilibria, DFT, docking, antioxidant and antimicrobial studies of iron(III) complexes involving Schiff bases derived from glucosamine or ethanolamine”, Inorganic Chimical Acta 492 (2019) 192. https://doi.org/10.1016/j.ica.2019.04.035.

[37] F. Rahaman, P. Gupta, M.N. Manjunatha & P. Gautam, “Benzo [g] indolebased Schiff’s base ligand and its transition metal complexes: Synthesis, characterization and anti-microbial activity studies”, Materials Today Proceedings 62 (2022) 5598. https://doi.org/10.1016/j.matpr.2022.04.814

[38] B. C. Asogwa & I. E. Otuokere, “Sonochemical synthesis and characterization of Fe(II) and Cu(II) nano-sized complexes of sulfamethoxazole”, Journal of Nigerian Society of Physical Sciences 6 (2024) 2011. https://doi.org/10.46481/jnsps.2024.2011.

[39] M. M. R. Badal, H. Z. Hossain & M. Maniruzzaman, “Synthesis, identification and computational studies of novel Schiff bases N-(2,6dibenzylidenecyclohexylidene)-N?-(2,4-dinitrophenyl)hydrazine derivatives”, SN Applied Sciences 2 (2020) 1914. https://doi.org/10.1007/s42452-020-03745-4.

[40] M. A. Thompson, “Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function”, ACS meeting Philadelphia 172 (2004) 42. https://doi.org/10.1007/978-1-4939-9752-7_13.

[41] P. A. Khalf-Alla, S. S. Hassan & M. M. Shoukry, “Complex formation equilibria, DFT, docking, antioxidant and antimicrobial studies of iron(III) complexes involving Schiff bases derived from glucosamine or ethanolamine”, Inorganica Chimica Acta 492 (2019) 192. https://doi.org/10.1016/j.ica.2019.04.035.

[42] S. Dallakyan & A. J. Olson, “Small-molecule library screening by docking with PyRx”, In Chemical Biology 1263 (2015) 243. https://doi.org/10.1007/978-1-4939-2269-7_19.

[43] S. Salentin, S. Schreiber, V. J. Haupt, M. F. Adasme & M. Schroeder, “PLIP: fully automated protein-ligand interaction profiler”, Nucleic Acids Research 43 (2015) W443. https://doi.org/10.1093/nar/gkv315.

[44] J. Singh, D. Malik & A. Raina, “Molecular docking analysis of azithromycin and hydroxychloroquine with spike surface glycoprotein of SARS-CoV-2”, Bioinformation 17 (2021) 11. https://doi.org/10.6026/97320630017011.

[45] J. Singh, D. Malik & A. Raina,“Molecular docking analysis of azithromycin and hydroxychloroquine with spike surface glycoprotein of SARS-CoV-”, Bioinformation 17 (2021) 11. https://doi.org/10.6026/97320630017011.

Published

2025-02-01

How to Cite

Zn(II) and Fe(II) complexes of  2,4-dinitro-N-[(Z)-[(E)-3-(2-nitrophenyl)prop-2-enylidene] amino] aniline: synthesis, characterization and In Silico SARS-CoV-2 inhibition studies. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2326. https://doi.org/10.46481/jnsps.2025.2326

Issue

Section

Chemistry

How to Cite

Zn(II) and Fe(II) complexes of  2,4-dinitro-N-[(Z)-[(E)-3-(2-nitrophenyl)prop-2-enylidene] amino] aniline: synthesis, characterization and In Silico SARS-CoV-2 inhibition studies. (2025). Journal of the Nigerian Society of Physical Sciences, 7(1), 2326. https://doi.org/10.46481/jnsps.2025.2326