Mathematical Modeling of Waves in a Porous Micropolar Fibrereinforced Structure and Liquid Interface

https://doi.org/10.46481/jnsps.2022.823

Authors

  • Augustine Igwebuike Anya GST-Mathematics Division, Veritas University Abuja, Bwari-Abuja, Nigeria
  • Uko Ofe Department of Pure and Applied Physics, Veritas University Abuja, Bwari-Abuja, Nigeria
  • Aftab Khan Department of Mathematics, COMSATS University Islamabad, Park Road Chak Shahzad, 44000 Islamabad, Pakistan

Keywords:

Micropolar, Fibre reinforced, Reflection/transmission, Voids/porosity, Liquid interface

Abstract

The present investigation envisages on the Mathematical modeling of waves propagating in a porous micropolar fibre-reinforced structure in a half-space and liquid interface. The harmonic method of wave analysis is utilized, such that, the reflection and transmission of waves in the media were modelled and it’s equations of motion analytically derived. It was deduced that incident longitudinal wave in the solid structure yielded four reflected waves given as; quasi–P wave (qLD), quasi–SV wave, quasi–transverse microrotational (qTM) wave and a wave due to voids and one transmitted wave known as the quasi-longitudinal transmitted (qLT) wave. The phase velocity in the liquid medium is independent of angle of propagation as observed. The corresponding amplitude ratios of propagations for both reflected and transmitted waves are analytically derived by employing Snell’s law. The model would prove to be of relevance in the understanding of modeling of the behavior of propagation phenomena of waves in micropolar fibre-reinforecd machination systems resulting in solid/liquid interfaces especially in earth sciences and in particular seismology, amongst others.

Dimensions

A. J. M. Spencer, Deformations of fibre-reinforced materials, Oxford University Press London, (1972).

A. C. Eringen, “Theory of micropolar elasticity”, International Journal of Engineering Sciences 5 (1967) 191. DOI: https://doi.org/10.1016/0020-7225(67)90004-3

S. C. Cowin & J. W. Nunziato, “Plane waves in linear elastic materials with voids”, Journal of Elasticity 15 (1983) 125. DOI: https://doi.org/10.1007/BF00041230

C. G. Knott, “Reflection and refraction of elastic waves with seismological Applications”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48 (1899) 64. DOI: https://doi.org/10.1080/14786449908621305

H. Jeffreys, “The thermodynamics of an elastic solid’, Mathematical Proceedings of Cambridge Philosophical Society 26 (1930) 101. DOI: https://doi.org/10.1017/S0305004100015085

R. Gutenberg, “Energy relation of reflected and refracted seismic waves”, Bulletin Seismological Society of America 34 (1944) 85. DOI: https://doi.org/10.1785/BSSA0340020085

S. Feng & D. L. Johnson, “High-frequency acoustic properties of a fluid/porous solid interface. I. new surface mode and II. The 2D reflection Green’s function”, Journal of the Acoustical Society of America 74 (1983) 906. DOI: https://doi.org/10.1121/1.389876

K.Wu, Q. Xue, & L. Adler, “Reflection and transmission of elastic waves from a fluid-saturated porous solid boundary”, Journal of the Acoustical Society of America 87 (1990) 2349. DOI: https://doi.org/10.1121/1.399081

J. Santos, J. Corbero, C. Ravazzoli & J. Hensley, “Reflection and transmission coefficients in fluid-saturated porous media”, Journal of the Acoustical Society of America 91 (1992) 1911. DOI: https://doi.org/10.1121/1.403702

D. G. Albert, “A comparison between wave propagation in saturated and air-saturated porous materials”, Journal of Applied Physics 73 (1993) 28. DOI: https://doi.org/10.1063/1.354035

M. Cieszko & J. Kubik, “Interaction of elastic waves with a fluidsaturated porous solid boundary”, Journal of Theoretical and Applied Mechanics 36 (1998) 561.

A. M. Abd-Alla, T. A. Nofal, S. M. Abo-Dahab & A. Al-Mullise, “Surface waves propagation in fibre-reinforced anisotropic elastic media subjected to gravity field”, International Journal of Physical Sciences8 (2013) 574.

A. M. Abd-Alla, S. M. Abo-Dahab & A. Al-Mullise,”Effects of rotation and gravity field on surface waves in a fibre-reinforced thermoelastic media under four theories”, Journal of Applied Mathematics 1 (2013) 20. DOI: https://doi.org/10.1155/2013/562369

A. M. Abd-Alla & S. M. Abo-Dahab, “Effect of initial stress, rotation and gravity on propagation of the surface waves in fibre-reinforced anisotropic solid elastic media”, Journal of Computational and Theoretical Nanosciences 12 (2015) 305. DOI: https://doi.org/10.1166/jctn.2015.3733

A. M. Abd-Alla, A. Khan & S. M. Abo-Dahab, “Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids”, Journal of Mechanical Science and Technology 29 (2015) 4289. DOI: https://doi.org/10.1007/s12206-015-0926-z

A. Khan, S. M. Abo-Dahab & A. M. Abd-Alla, “Gravitational effect on surface waves in a homogeneous fibrereinforced anisotropic general viscoelastic media of higher integer and fractional order with voids”, International Journal of Physical Sciences 10 (2015) 604. DOI: https://doi.org/10.5897/IJPS2015.4384

S. M. Abo-Dahab, A. M. Abd-Alla & A. Khan, “Magnetism and rotation effect on surface waves in fibrereinforced anisotropic general viscoelastic media of higher order”, Journal of Mechanical Science and Technology 29 (2015) 3381. DOI: https://doi.org/10.1007/s12206-015-0736-3

A. I. Anya, M. W. Akhtar, M. S. Abo-Dahab, H. Kaneez, A. Khan & J. Adnan, “Effects of a magnetic field and initial stress on reflection of SV-waves at a free surface with voids under gravity”, Journal of the Mechanical Behavior of Materials 27 (2018) 5. DOI: https://doi.org/10.1515/jmbm-2018-0002

A. I. Anya & A. Khan, “Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids”, Geomechanics and Engineering18 (2019) 605.

A. I. Anya & A. Khan, “Reflection and propagation of magnetothermoelastic plane waves at free surfaces of a rotating micropolar fibrereinforced medium under GL Theory”, International Journal of Acoustics and Vibration, 25 (2020)190. DOI: https://doi.org/10.20855/ijav.2020.25.21575

S. K. Tomar & J. Kaur, “SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half- space”, Acta Mechanica 190 (2007) 1. DOI: https://doi.org/10.1007/s00707-006-0423-7

S. S. Singh & S. K. Tomar, “qP-wave at a corrugated interface between two dissimilar pre stressed elastic half-spaces”, Journal of Sound and Vibration 317 (2008) 687. DOI: https://doi.org/10.1016/j.jsv.2008.03.036

B. Singh & A. K. Yadav, “Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space”, Journal of Earth System and Science 122 (2013) 1045 DOI: https://doi.org/10.1007/s12040-013-0323-x

A. K. Singh, K. C. Mistri & A. Das, “Propagation of Love-type wave in a corrugated fibre- reinforced layer”, Journal of Mechanics 32 (2016) 693. https://doi.org/10.46481/jnsps.2019.9 DOI: https://doi.org/10.1017/jmech.2016.40

A. K. Singh, K. C. Mistri, T. Kaur & A. Chattopadhyay, “Effect of undulation on SH- wave propagation in corrugated magneto- elastic transversely isotropic layer”, Mechanics of Advanced Materials and Structures 24 (2017) 200. DOI: https://doi.org/10.1080/15376494.2015.1124952

S. S, Singh, “Love wave at a layer medium bounded by irregular boundary surfaces”, Journal of Vibration and Control 17 (2011) 789. DOI: https://doi.org/10.1177/1077546309351301

B. Singh, “Reflection and transmission of elastic waves at a loosely bonded interface between an elastic solid and a viscoelastic porous solid saturated by viscous liquid”, Global Journal of Researches in Engineering 14 (2014) 35.

A. K. Vashisth, M. D. Sharma & M. L. Gogna, “Reflection and transmission of elastic waves at a loosely bonded interface between an elastic solid and liquid saturated porous solid”, Geophysical Journal International 105 (1991) 601. DOI: https://doi.org/10.1111/j.1365-246X.1991.tb00799.x

A. K. Singh, K. C. Mistri & M. K. Pal, “Effect of loose bonding and corrugated boundary surface on propagation of Rayleigh-type wave”, Latin America Journal of Solids and Structures 15 (2018) 1. DOI: https://doi.org/10.1590/1679-78253577

U. S. Aliyu, I. G. Geidam, M. S. Otto & M. Hussaini, “Investigation of the elastic moduli of Er2O3-SiO2 glasses using theoretical model”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 9. https://doi.org/10.46481/jnsps.2022.222 DOI: https://doi.org/10.46481/jnsps.2022.222

J. Damisa, J. O. Eggha & I. L. Ikhioya, “Deposition Time induced structural and optical properties of lead sulphide thin films”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 455. DOI: https://doi.org/10.46481/jnsps.2021.157

T. S. Fagbemigun, M. O. Olorunfemi & S. A. Wahab, ”Modeling of selfpotential (SP) anomalies over a polarized rod with finite depth extents”, Journal of the Nigerian Society of Physical Sciences 1 (2019) 51. https://doi.org/10.46481/jnsps.2019.10 DOI: https://doi.org/10.46481/jnsps.2019.10

F. O. Akinpelu, R. A. Oderinu & A. D. Ohagbue, “Analysis of hydromagnetic double exothermic chemical reactive flow with connective cooling through a porous medium under bimolecular kinetics”, Journal of the Nigerian Society of Physical Sciences 4 (2022) 130. DOI: https://doi.org/10.46481/jnsps.2022.525

R. Kumar, K. D. Sharma & S. K. Garg, “On reflection of plane waves in transversely isotropic micropolar viscothermoelastic solid”, Materials Physics and Mechanics 22 (2015) 1.

S. L. Roderic & L. B. Robert, “Noncentrosymmetry in micropolar elasticity”, International Journal of Engineering Sciences 20 (1982) 1161. DOI: https://doi.org/10.1016/0020-7225(82)90096-9

B. Singh, “Reflection and transmission at the interface between a liquid and micropolar viscoelastic solid with stretch”, Sadhana-Academy Proceeding in Engineering Sciences 25 (2000) 589. DOI: https://doi.org/10.1007/BF02703507

Published

2022-08-20

How to Cite

Anya, A. I., Ofe, U., & Khan, A. (2022). Mathematical Modeling of Waves in a Porous Micropolar Fibrereinforced Structure and Liquid Interface. Journal of the Nigerian Society of Physical Sciences, 4(3), 823. https://doi.org/10.46481/jnsps.2022.823

Issue

Section

Original Research