Effects of Exchange Correlation Functional (Vwdf3) on the Structural, Elastic, and Electronic Properties of Transition Metal Dichalogenides

https://doi.org/10.46481/jnsps.2023.1094

Authors

  • S. A. Yamusa Department of Physics, Federal College of Education Zaria, P.M.B 1041, Zaria, Kaduna State, Nigeria
  • A. Shaari Department of Physics, Faculty of Science, Universiti Teknologi Malaysia
  • I. Isah Department of Science Laboratory Technology, Jigawa State Polytechnic, Dutse, Jigwa State Nigeria
  • U. B. Ibrahim Faculty of Science, Physics Department Kano University of Science and Technology, Wudil, Kano, Nigeria
  • S. I. Kunya Department of Science Laboratory Technology, Jigawa State Polytechnic, Dutse, Jigwa State Nigeria
  • S. Abdulkarim Faculty of Science, Physics Department Kano University of Science and Technology, Wudil, Kano, Nigeria
  • Y. S. Itas Department of Physics, Bauchi State University, Gadau, P.M.B. 65 Bauchi, Nigeria
  • M. Alsalamh Physics Department, Faculty of Science, University of Hail, Saudi Arabia

Keywords:

Van der Waals, PBE, Hexagonal, vdW-DF3, Dichalcogenides

Abstract

In this research, the effects of Van der Waals forces on the structural, elastic, electronic, and optical properties of bulk transition metals dichalcogenides (TMDs) were studied using a novel exchange-correlation functional, vdW-DF3. This new functional tries to correct the hidden Van der Waals problems which are not reported by the previous exchange functionals. Molybdenum dichalcogenide, MoX 2 (X = S, Se, Te) was chosen as a representative transition metal dichalcogenide to compare the performance of the newly designed functional with the other two popular exchange-correlation functional; PBE and rVV10. From the results so far obtained, the analysis of the structural properties generally revealed better performance by vdW-DF3 via the provision of information on lattice parameters very closer to the experimental value. For example, the lattice constant obtained by vdW-DF3 was 3.161 Å which is very close to 3.163 Å and 3.160 Å experimental and theoretical values respectively. Calculations of the electronic properties revealed good performance by vdW-DF3 functional. Furthermore, new electronic features were revealed for MoX2 (X = S, Se, Te). In terms of optical properties, PBE functional demonstrates lower absorption than vdW-DF3, as such it can be reported that vdW-DF3 improves photon absorption by TMDs. However, our results also revealed that vdW-DF3 performed well for MoS2 than for MoSe2 and MoTe2 because of the lower density observed for the S atom in MoS2.

Dimensions

I. G. Kaplan, Modern State of the Conventional DFT Method Studies and the Limits Following from the Quantum State of the System and Its Total Spin. Density Functional Theory-Recent Advances, New Perspectives and Applications, IntechOpen, (2022). DOI: https://doi.org/10.5772/intechopen.102670

S. Ghosh & K. Bhattacharyya, “Origin of the Failure of Density Functional Theories in Predicting Inverted Singlet-Triplet Gaps”, The Journal of Physical Chemistry A 126 (2022) 1378. DOI: https://doi.org/10.1021/acs.jpca.1c10492

M. Kamiya, T. Tsuneda, & K. Hirao, “A density functional study of van der Waals interactions”, The Journal of chemical physics 117 (2002) 6010. DOI: https://doi.org/10.1063/1.1501132

Y. S. Itas, C. E. Ndikilar, & T. Zangina, “Carbon Nanotubes: A Review of Synthesis and Characterization Methods/Techniques”, The International Journal of Science & Technology 8 (2020) 43. DOI: https://doi.org/10.24940/theijst/2020/v8/i2/ST2002-020

M. Smyrnioti & T. Ioannides, “Dimethyl Ether Oxidation over Copper Ferrite Catalysts”, Catalysts 12 (2022) 604. DOI: https://doi.org/10.3390/catal12060604

S. A. Yamusa, A. Shaari, & I. Isah, “Structural stability, Electronic and Optical Properties of Bulk MoS2 Transition Metal Dichalcogenides: A DFT Approach”, J. Appl. Phys. 14 (2022) 40.

S. Chen & Y. Pan, “Mechanism of interlayer spacing on catalytic properties of MoS 2 from the ab-initio calculation”, Applied Surface Science 599 (2022) 154041. DOI: https://doi.org/10.1016/j.apsusc.2022.154041

Y. Pan, “Role of SS interlayer spacing on the hydrogen storage mechanism of MoS 2 ” International Journal of Hydrogen Energy 43 (2018) 3087. DOI: https://doi.org/10.1016/j.ijhydene.2017.12.185

Y. S. Itas, A. B. Suleiman, C. E. Ndikilar, A. Lawal, R. Razali, M. U. Khandaker, P. Ahmad, N. Tamam, & A. Sulieman, “The Exchange-Correlation Effects on the Electronic Bands of Hybrid Armchair Single-Walled Carbon Boron Nitride Nanostructure”, Crystals 12 (2022) 394. DOI: https://doi.org/10.3390/cryst12030394

T. Arlt, M. Bermejo, M. A. Blanco, L. Gerward, J. Z. Jiang, J. S. Olsen, & J. M. Recio, “High-pressure polymorphs of anatase TiO 2 . Physical Review B 61 (2000) 14414. DOI: https://doi.org/10.1103/PhysRevB.61.14414

M. L. Pereira Júnior, C. M. Viana de Araújo, J. M. de Sousa, R. T. de Sousa Júnior, L. F. Roncaratti Júnior, W. Ferreira Giozza, & L. A. Ribeiro Júnior, “On the elastic properties and fracture patterns of MoX 2 (X= S, Se, Te) membranes: a reactive molecular dynamics study”, Condensed Matter 5 (2020) 73.

Y. S. Itas, A. B. Suleiman, C. E. Ndikilar, A. Lawal, R. Razali, I. I. Idowu, M. U. Khandaker, P. Ahmad, N. Tamam, & A. Sulieman, “Computational Studies of the Excitonic and Optical Properties of Armchair SWCNT and SWBNNT for Optoelectronics Applications”, Crystals 12 (2022) 870. DOI: https://doi.org/10.3390/cryst12060870

S. A. Yamusa, A. Shaari, N. A. M. Alsaif, I. M. Alsalamah, I. Isah, & N. Rekik, Elucidating the Structural, Electronic, Elastic, and Optical Properties of Bulk and Monolayer MoS2 Transition-Metal Dichalcogenides: A DFT Approach. ACS omega (2022). DOI: https://doi.org/10.1021/acsomega.2c07030

N. Yedukondalu, V. D. Ghule, & G. Vaitheeswaran, “Computational study of structural, electronic, and optical properties of crystalline NH4N3”, The Journal of Physical Chemistry C 116 (2012) 16910. DOI: https://doi.org/10.1021/jp3054839

S. Chen, Y. Pan, D. Wang, & H. Deng, “Structural stability and electronic and optical properties of bulk WS2 from first-principles investigations”, Journal of Electronic Materials 49 (2020) 7363. DOI: https://doi.org/10.1007/s11664-020-08475-2

I. Diez-Perez, Z. Li, S. Guo, C. Madden, H. Huang, Y. Che, X. Yang, L. Zang, & N. Tao, “ Ambipolar transport in an electrochemically gated single-molecule field-effect transistor”, ACS Nano 6 (2012) 7044. DOI: https://doi.org/10.1021/nn302090t

B. S. Kim, J.W. Rhim, B. Kim, C. Kim, & S. R. Park, “Determination of the band parameters of bulk 2H-MX2 (M=Mo, W; X= S, Se) by angle-resolved photoemission spectroscopy”, Scientific reports 6 (2016) 1. DOI: https://doi.org/10.1038/srep36389

B. E. McCandless & K. D. Dobson, “Processing options for CdTe thin film solar cells”, Solar Energy 77 (2004) 839. DOI: https://doi.org/10.1016/j.solener.2004.04.012

A. Roy, H. C. P. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, & S. K. Banerjee, “Structural and electrical properties of MoTe 2 and MoSe2 grown by molecular beam epitaxy”, ACS applied materials & interfaces 8 (2016) 7396. DOI: https://doi.org/10.1021/acsami.6b00961

A. Candan, S. Akbudak, Ugur, & G. Ugur, “Theoretical research on structural, electronic, mechanical, lattice dynamical and thermodynamic properties of layered ternary nitrides Ti2AN (A=Si, Ge, and Sn)”, Journal of Alloys and Compounds 771 (2019) 664. https://doi.org/10.1016/j.jallcom.2018.08.286. DOI: https://doi.org/10.1016/j.jallcom.2018.08.286

M. L. Pereira Júnior, C. M. Viana de Araújo, J. M. de Sousa, R. T. de Sousa Júnior, L. F. Roncaratti Júnior, W. Ferreira Giozza, & L. A. Ribeiro Júnior, “On the elastic properties and fracture patterns of MoX 2 (X= S, Se, Te) membranes: a reactive molecular dynamics study”, Condensed Matter 5 (2020) 73. DOI: https://doi.org/10.3390/condmat5040073

L. Wei, C. Jun-fang, H. Qinyu, & W. Teng, “Electronic and elastic properties of MoS2”, Physica B: Condensed Matter 405 (2010) 2498. https://doi.org/10.1016/j.physb.2010.03.022. DOI: https://doi.org/10.1016/j.physb.2010.03.022

J. N. Yuan, Y. Cheng, X. Q. Zhang, X. R. Chen, & L. C. Cai, “First-principles study of electronic and elastic properties of hexagonal layered crystal MoS2 under pressure”, Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences 70 (2015) 529. https://doi.org/10.1515/zna-2015-0102. DOI: https://doi.org/10.1515/zna-2015-0102

F. Mouhat & F.-X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems”, Physical review B 90 (2014) 224104. DOI: https://doi.org/10.1103/PhysRevB.90.224104

E. E. Etim, M. E. Khan, O. E. Godwin, & G. O. Ogofotha, “Quantum Chemical Studies on C4H4N2 Isomeric Molecular Species”, Journal of the Nigerian Society of Physical Sciences 3 (2021) 429. DOI: https://doi.org/10.46481/jnsps.2021.282

Published

2023-01-14

How to Cite

Aminu Yamusa, S., Shaari, A., Isah, I., Bello Ibrahim, U., I. Kunya, S. ., Abdulkarim, S., Itas, Y. S. ., & Alsalamh, M. (2023). Effects of Exchange Correlation Functional (Vwdf3) on the Structural, Elastic, and Electronic Properties of Transition Metal Dichalogenides. Journal of the Nigerian Society of Physical Sciences, 5(1), 1094. https://doi.org/10.46481/jnsps.2023.1094

Issue

Section

Original Research