Development and validation of hybrid drying kinetics models with finite element method integration for black paper in a v-groove solar dryer

Authors

  • Ibrahim Adamu Mohammed
    School of Mathematical Sciences, Universiti Sains Malaysia Gelugor, Penang, 11800, Malaysia
    Department of Mathematics and Computer Science, School of Science Education, College of Education Billiri, PMB 011, Gombe State, Nigeria
  • Majid Khan Majahar Ali
    School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia
    https://orcid.org/0000-0002-5558-5929
  • Sani Rabiu
    School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia
  • Raja Aqib Shamim
    School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia
    https://orcid.org/0000-0002-2531-1249
  • Shahida Shahnawaz
    School of Mathematical Sciences, Universiti Sains Malaysia 11800 USM, Penang, Malaysia
    https://orcid.org/0009-0008-2079-4801

Keywords:

Black pepper, Solar drying, Hybrid drying models, Finite element method, CurveExpert professional

Abstract

Preserving agricultural products requires drying techniques to avoid spoilage and financial setbacks. Sun drying is unreliable because of changing weather conditions; hybrid solar dryers provide an option. However, it is not easy to forecast the drying process of crops such, as black pepper due to its drying characteristics. This research examines how accurately different models predict the drying process of black pepper in a v Groove Hybrid Solar Dryer using a modeling framework and a Finite Element Method (FEM) inspired approach that is newly developed. Black pepper was dried for four days, with the moisture ratio data collected every 30 minutes from 8 AM to 5 PM. Twenty-seven drying kinetics models were tested on the data, with the Alibus model, Aghbashlo, and Infiltration Approximation models being the three best performers. To improve the accuracy of predictions, a total of 220 hybrid models were created by merging pairs of the 11 best-performing models using a specialized formula based on weights. The analysis indicated that more than thirty (30) hybrid models performed better than single models with Hybrid M28 (combining Logarithmic and Alibus), Hybrid M38 (pairing Lewis and Alibus), and Hybrid M101 (merging Infiltration Approximation and Kaleemullah), showing exceptional results. Furthermore, a model based on FEM was developed and validated using MATLAB and CurveExpert Professional to account for the physical diffusion characteristics. While it demonstrated good alignment with the experimental data, it equally acted as a solid foundation based on physics principles. The results highlighted the capability of combining hybrid and FEM based models to better understand intricate drying patterns in a more efficient way which can lead to improved solar drying system designs with enhanced reliability for future optimization efforts, across various crop types.

Dimensions

[1] S. Chtioui & A. Khouya, “Mathematical modeling and performance evaluations of a wood drying process using photovoltaic thermal and doublepass solar air collectors”, Applied Thermal Engineering 255 (2024) 123901. https://doi.org/10.1016/j.applthermaleng.2024.123901.

[2] I. T. Togrul & D. Pehlivan, “Mathematical modelling of solar drying of apricots in thin layers”, Journal of Food Engineering 55 (2002) 209. https://doi.org/10.1016/S0260-8774(02)00065-1.

[3] A. Gupta, P. P. Borah, B. Das & J. D. Mondal, “Energy and exergy based performance evaluation of an innovative pv-assisted solar dryer with and without modified absorber”, Solar Energy 272 (2024) 112464. https://doi.org/10.1016/j.solener.2024.112464.

[4] C. Nettari, A. Boubekri, A. Benseddik, S. Bouhoun, D. Daoud, A. Badji & I. Hasrane, “Design and performance evaluation of an innovative medium-scale solar dryer with heat recovery based-latent heat storage: Experimental and mathematical analysis of tomato drying”, Journal of Energy Storage 88 (2024) 111559. https://doi.org/10.1016/j.est.2024.111559.

[5] S. Vijayan, T. V. Arjunan & A. Kumar, “Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer”, Innovative Food Science and Emerging Technologies 36 (2016) 59. http://dx.doi.org/10.1016/j.ifset.2016.05.014.

[6] I. T. Togrul & D. Pehlivan, “Modelling of thin layer drying kinetics of some fruits under open-air sun drying process”, Journal of Food Engineering 65 (2004) 425. https://doi.org/10.1016/j.jfoodeng.2004.02.001.

[7] E. C. Lopez-Vidana, A. L. Cesar-Munguı́a, O. Garcı́a-Valladares, I. P. Figueroa & R. B. Orosco, “Thermal performance of a passive, mixed-type solar dryer for tomato slices (solanum lycopersicum)”, Renewable Energy 147 (2020) 845. https://doi.org/10.1016/j.renene.2019.09.018.

[8] R. C. De Sousa, A. B. S. Costa, M. D. M. Freitas, M. T. B. Perazzini & H. Perazzini, “Convective drying of black pepper: Experimental measurements and mathematical modeling of the process”, Food and Bioproducts Processing 143 (2024) 102. https://doi.org/10.1016/j.fbp.2023.10.009.

[9] C. H. Chong, C. L. Law, M. Cloke, C. L. Hii, Abdullah & W. R. W. Daud, “Drying kinetics and product quality of dried chempedak”, Journal of Food Engineering 88 (2008) 522. https://doi.org/10.1016/j.jfoodeng.2008.03.013.

[10] S. Ambawat, A. Sharma & R. K. Saini, “Mathematical modeling of thin layer drying kinetics and moisture diffusivity study of pretreated moringa oleifera leaves using fluidized bed dryer”, Processes 10 (2022) 2464. https://doi.org/10.3390/pr10112464.

[11] B. Norerama, D. Pagukuman & M. K. W. Ibrahim, “A review of the significance effect of external factors of the solar dryer design to dried foods product quality”, Journal of Engineering, Design and Technology 20 (2022) 1765. https://doi.org/10.1108/JEDT-01-2021-0033.

[12] N. A. Z. Jinin, M. A. Z. Benjamin & M. A. Awang, “Drying kinetics and quality assessment of noodles from Piper sarmentosum Roxb. (Kaduk) leaves”, Malaysian Journal of Fundamental and Applied Sciences 20 (2024) 835. https://doi.org/10.11113/mjfas.v20n4.3519.

[13] M. A. Karim, E. Perez & Z. M. Amin, “Mathematical modelling of counter flow v-grove solar air collector”, Renewable Energy 67 (2013) 192. https://doi.org/10.1016/j.renene.2013.11.027.

[14] L. O. Afolagboye, Z. O. Arije, A. O. Talabi & O. O. Owoyemi, “Effect of pre-test drying temperature on the properties of lateritic soils”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1109. https://doi.org/10.46481/jnsps.2023.1109.

[15] A. M. Antunes, F. L. Gaia, J. W. Rodrigues, M. K. C. De Araujo, C. F. Lisboa, A. B. Pacheco, B. S. Fjiyama & E. T. De Andrade, “Mathematical modeling of drying kinetics of two varieties of cacao cultivated in the brazilian amazon region”, Contribuciones a Las Ciencias Sociales 17 (2024) 1. https://doi.org/10.55905/revconv.17n.7-338.

[16] O. Bongomin, C. Nzila, J. I. Mwasiagi & O. Maube, “Comprehensive thermal properties, kinetic, and thermodynamic analyses of biomass wastes pyrolysis via tga and coatsredfern methodologies”, Energy Conversion and Management: X 24 (2024) 100723. https://doi.org/10.1016/j.ecmx.2024.100723.

[17] W. Gao, Y. Zhang, Y. Wang & L. Zhan, “Pyrolysis characteristics and kinetic analysis of coating pitch derived from ethylene tar using model-free and model-fitting methods”, Journal of Analytical and Applied Pyrolysis 183 (2024) 106803. https://doi.org/10.1016/j.jaap.2024.106803.

[18] N. P. Niemela, H. Tolvanen, T. Saarinen, A. Leppanen & T. Joronen, “Cfd based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization”, Energy 128 (2017) 676. https://api.semanticscholar.org/CorpusID:99407318.

[19] G. Zhang, Y. Yu, C. Yao, L. Zhou, G. Zhu, Y. Lai & P. Niu, “Effect of far-infrared drying on broccoli rhizomes: Drying kinetics and quality evaluation”, Processes 12 (2024) 1674. https://doi.org/10.3390/pr12081674.

[20] C. Phusampao, “Moisture diffusivity and finite element simulation of drying of banana cv. Kluai Leb Mu Nang”, Life Sciences and Environment Journal 34 (2023) 1. https://doi.org/10.14456/lsej.2023.34.

[21] L. A. da Costa, J. L. F. de Souza, R. Huebner, F. A. R. Filho & A. A. Dias, “Finite element simulation and experimental validation of the variations of temperature and moisture content in unsteady-state drying of corn in a fixed bed”, Journal of the Brazilian Society of Mechanical Sciences and Engineering 45 (2023) 1. https://doi.org/10.1007/s40430-022-03900-5.

[22] F. L. Joseph, A. S. Olagunju, E. O. Adeyefa & A. A. James, “Hybrid block methods with constructed orthogonal basis for solution of third-order ordinary differential equations”, Journal of the Nigerian Society of Physical Sciences 5 (2003) 865. https://doi.org/10.46481/jnsps.2023.865.

[23] B. Y. Waheed, B. Yusuf & A. Abdulrazaq, “Model fitness and predictive accuracy in linear mixed-effects models with latent clusters”, Journal of the Nigerian Society of Physical Sciences 5 (2023) 1437. https://doi.org/10.46481/jnsps.2023.1437.

[24] S. Malvandi, H. Feng & M. Kamruzzaman, “Application of nir spectroscopy and multivariate analysis for non-destructive evaluation of apple moisture content during ultrasonic drying”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 269 (2022) 120733. https://doi.org/10.1016/j.saa.2021.120733.

[25] P. V. V. P. Prudhvi, S. Deepika & P. P. Sutar, “Modeling moisture and solids transfer kinetics during a novel microwave-assisted water absorption-desorption process of dry red gram (cajanus cajan l.) splits”, Journal of Food Engineering 318 (2022) 110891. https://doi.org/10.1016/j.jfoodeng.2021.110891.

[26] C. Liu, Z. Li, L. Liu, X. Qu, Z. Shi, Z. Ma, X. Wang & F. Huang, “A thermal cross-linking approach to developing a reinforced elastic chitosan cryogel for hemostatic management of heavy bleeding”, Carbohydrate Polymers 345 (2024) 122599. https://doi.org/10.1016/j.carbpol.2024.122599.

[27] U. K. Muhammad, U. R. Asim, F. A. K. Muhammad, A. Naveed, A. R. Sheikh & S. M. Khurram, “Novel hybrid nanostructure hydrogel for treating fungal infections: Design and evaluation”, BioNanoScience 14 (2024) 1386. https://link.springer.com/article/10.1007/s12668-024-01419-8.

[28] P. Y. Ng, E. Aruchunan, F. Furuoka, S. A. Abdul Karim, J. V. L. Chew & M. K. M. Ali, “Intelligent LASSO regression modelling for seaweed drying analysis”, in intelligent systems modeling and simulation III: Artificial Intelligent, Machine Learning, Intelligent Functions and Cyber Security, S. A. Abdul Karim (Ed.), Springer Nature Switzerland, Cham, Switzerland, 2024, pp. 121–141. https://doi.org/10.1007/978-3-031-67317-7_8.

[29] A. N. Jibril, X. Zhang, S. Wang, Z. A. Bello, I. I. Henry & K. Chen, “Far-infrared drying influence on machine learning algorithms in improving corn drying process with graphene irradiation heating plates”, Journal of Food Process Engineering 47 (2024) e14603. https://doi.org/10.1111/jfpe.14603.

[30] D. Kumar, K. Kumar, P. Roy & G. Rabha, “Renewable energy in agriculture: Enhancing aquaculture and post-harvest technologies with solar and AI integration”, Asian Journal of Research in Computer Science 17 (2024) 201. https://doi.org/10.9734/ajrcos/2024/v17i12539

Published

2025-10-05

How to Cite

Development and validation of hybrid drying kinetics models with finite element method integration for black paper in a v-groove solar dryer. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4). https://doi.org/10.46481/jnsps.2025.2933

Issue

Section

Mathematics & Statistics

How to Cite

Development and validation of hybrid drying kinetics models with finite element method integration for black paper in a v-groove solar dryer. (2025). Journal of the Nigerian Society of Physical Sciences, 7(4). https://doi.org/10.46481/jnsps.2025.2933

Most read articles by the same author(s)